
Anais do
VII Workshop-Escola de Sistemas de Agentes,

seus Ambientes e apliCações

— WESAAC 2013 —

Organizado por

Anarosa Alves Franco Brandão
Rafael Heitor Bordini
Jaime Simão Sichman

São Paulo, 26-29 Maio de 2013

Workshop-Escola de Sistemas de Agentes, seus Ambientes e apliCações —
VII WESAAC / Brandão, A.A.F.; Bordini, R.H.; Sichman, J.S.; (Org).
ANAIS.— — São Paulo, 2013.

207p. :il.
ISSN 2177-2096

1. Agentes Inteligentes. 2. Sistemas de Agentes de Software. 3. Ambientes
para Agentes. 4. Aplicações de Agentes. I. Brandão, A.A.F. II. Bordini, R.H.
III. Sichman, J.S.

Prefácio

Este documento contém os trabalhos apresentados na sétima edição do WESAAC
(Workshop-Escola de Sistemas de Agentes, seus Ambientes e apliCações). O WESAAC
2013 foi realizado na cidade de São Paulo - SP, nas dependências da Universidade de São
Paulo (USP), entre os dias 26 e 29 de maio de 2013, com o apoio da Escola Politécnica,
do Instituto de Matemática e Estat́ıstica e do Centro de Computação Eletrônica da Uni-
versidade de São Paulo, da Sociedade Brasileira da Computação (SBC) e do Centro de
Cultura Judaica de São Paulo.

Continuando a tradição da série WESAAC, os objetivos do evento continuam relaci-
onados à integração de pesquisadores e estudantes de todos os ńıveis na área de Agentes
e Sistemas de Agentes e divulgação das atividades de pesquisa dos diversos grupos de
pesquisa do Brasil, com o intuito de facilitar o intercâmbio de conhecimentos. Para isso, o
evento é constitúıdo de uma combinação de Oficinas e Palestras (a parte “escola”), profe-
ridas por pesquisadores experientes, e apresentações de Trabalhos Completos e Resumos
Estendidos (a parte “workshop”).

O histórico deste evento, que inicialmente foi denominado “Workshop - Escola de Sis-
temas de Agentes para Ambientes Colaborativos” e, a partir de sua quarta edição passou a
ter a denominação atual, mostra o crescimento constante da comunidade de pesquisadores
na área de agentes e sistemas baseados em agentes no Brasil. As três primeiras edições
do evento tiveram uma abrangência regional, atingindo especialmente pesquisadores da
região Sul do Brasil. A partir da quarta edição, realizada na cidade do Rio Grande - RS,
aumentou-se o escopo do evento, ampliando sua abrangência de regional para nacional.

Nesta sétima edição do WESAAC, mantivemos a abrangência nacional, e ampliamos
a participação internacional de pesquisadores destacados da área de sistemas de agentes,
oriundos da Université Pierre et Marie Curie (UPMC)-França, da Université de Toulouse,
França, da University of Otago, Nova Zelândia, e da Bar Ilan University, Israel. Além
disso, também convidamos pesquisadores da indústria, notadamente a IBM.

Para esta edição, o evento recebeu uma variedade de contribuições. Foram submetidos
42 artigos, sendo 21 artigos completos e 21 artigos resumidos. Dentre os artigos completos,
13 foram aceitos para apresentação oral, divididas em três sessões técnicas, e 8 foram
aceitos para apresentação na forma de poster. Dos artigos resumidos, 16 foram aceitos
para apresentação como poster. Todos os artigos aceitos constam deste documento.

Gostaŕıamos de agradecer aos palestrantes convidados, Onn Shehory, Amal El Fal-
lah Seghrouchni e Ana Bazzan que abrilhantaram o evento com suas palestras. Também
agradecemos aos ministrantes de oficinas: Michael Winikoff, Fred Amblard, Amal El Fal-
lah Seghrouchni, Jomi Fred Hubner e Sara Casare. Finalmente, agradecemos a todos os
pesquisadores que submeteram os seus artigos, assim como aos membros do comitê de
programa, aos revisores adicionais pelo criterioso trabalho desenvolvido e às nossas ins-
tituições (USP e PUC-RS). Um agradecimento especial às agências FAPESP, CAPES e
CNPq, pelo fomento recebido e ao CCE-USP e ANSP,que tornaram posśıvel o WESAAC
2013.

São Paulo, Maio, 2013
Anarosa Alves Franco Brandão

Rafael Heitor Bordini
Jaime Simão Sichman

Support-Patroćınio

Organization - Organização

General Chair - Organização Geral

Anarosa Alves Franco Brandão Universidade de São Paulo

PC Chair - Coordenação do Comitê de Programa

Rafael Heitor Bordini Pontif́ıcia Universidade Católica do Rio Grande do Sul

Local Chair - Organização Local

Jaime Simão Sichman Universidade de São Paulo

Steering Committee - Comitê Consultivo

Rejane Frozza Universidade de Santa Cruz do Sul
João Luis Tavares da Silva Universidade de Caxias do Sul
Diana Francisca Adamatti Universidade Federal do Rio Grande
Gustavo Gimenez-Lugo Universidade Federal Tecnológica do Paraná
Jomi Fred Hübner Universidade Federal de Santa Catarina

Program Committee - Comitê de Programa

Adamatti, Diana FURG (Brasil)
Aguiar, Marilton Sanchotene de UFPel (Brasil)
Alencar, Fernanda UFPE (Brasil)
Balsa, João Univ. Lisboa (Portugal)
Barbosa, Raquel FURG (Brasil)
Bazzan, Ana L. C. UFRGS (Brasil)

Boissier, Olivier EMSE (FranÃ§a)
Bordini, Rafael Heitor PUCRS (Brasil)
Brandão, Anarosa Alves Franco USP (Brasil)
Campos, André UFRN (Brasil)
Carine Webber UCS, (Brasil)
Castro, Paulo André L. ITA (Brasil)
Choren, Ricardo IME/RJ (Brasil)
Cortés, Mariela Inés UECE (Brasil)
Costa, Antonio Carlos Rocha FURG (Brasil)
Coutinho, Luciano UFMA (Brasil)
David, Nuno ISCTE (Portugal)
Dimuro, Graçaliz FURG (Brasil)
Ferreira Jr., Paulo R. UFPel (Brasil)
Frozza, Rejane UNISC (Brasil)
Giménez-Lugo, Gustavo UTFPR (Brasil)
Gonçalves, Eder FURG (Brasil)
Hubner, Jomi Fred UFSC (Brasil)
Jaques, Patricia UNISINOS (Brasil)
Koch, Fernando IBM Research (Brasil)
Leite, Joao Universidade Nova de Lisboa (Portugal)
Lemke, Ana Paula IFRS (Brasil)

Lorenzi, Fabiana UFRGS (Brasil)
Marchi, Jerusa UFSC (Brasil)
Meneguzzi, Felipe PUCRS (Brasil)
Moreira, Alvaro UFRGS (Brasil)
Nunes, Ingrid UFRGS (Brasil)
Okuyama, Fabio IFRS (Brasil)
Rabelo, Ricardo J. UFSC (Brasil)
Ribeiro, Marcelo Blois GE Global Research (Brasil)
Ricci, Alessandro University of Bologna (Italia)
Rodrigues, Maira UFMG (Brasil)
Rosa, Paulo IME/RJ (Brasil)
Sichman, Jaime Simão USP (Brasil)
Silva, Joao Luis UCS (Brasil)
Silva, Viviane UFF (Brasil)
Silveira, Ricardo Azambuja UFSC (Brasil)
Simari, Guillermo Ricardo Universidad Nacional del Sur (Argentina)
Tacla, Cesar A. UTFPR (Brasil)
Tedesco, Patricia UFPE (Brasil)
Trigo, Paulo ISEL (Portugal)
Vasconcelos, Wamberto University of Aberdeen (UK)

Additional Reviewers - Revisores Adicionais

Brito, Maiquel De
Souza, Marlo
Lima, Allan
Schmitz, Tiago Luiz
Zateli, Maicon

Sumário

I Invited Speakers - Palestras Convidadas

On agent collaboration, games and coalitions . 3

Onn Shehory

Coordination in multi-agent systems: dimensions and mechanisms 5

Amal El Fallah Seghrouchni

Agents and Traffic Simulation . 7

Ana Bazzan

II Short Courses - Oficinas

Coordination of Complex Systems based on Multi-Agent Planning 11

Amal El Fallah Seghrouchni

Agent-Oriented Software Engineering: Current State and Future Directions 13

Michael Winikoff

Modelling social influence among agents . 15

Fred Amblard

Uma introdução a engenharia de métodos situacionais para SMA 17

Sara Casare

Programação orientada a Multiagentes . 19

Jomi Fred Hubner

III Full Papers - Artigos Completos

A Language to Specify the Interaction Considering Agents, Environment, and
Organization . 23

Maicon Rafael Zatelli and Jomi Fred Hubner

Extending deontic interpreted systems with action logic . 29

Raquel Barbosa and Antonio Carlos da Rocha Costa

Application of Workflow in Multi-Agent System Organization 35

José Neri, Carlos Santos and Jomi Hubner

A Normative and Self-Organizing Piloting Model for Virtual Network Management 41

Carolina Valadares, Manoel Netto and Carlos Lucena

A Multiagent System for Urban Traffic Control . 47

Antonio de Abreu Batista Jr and Luciano Reis Coutinho

Multiagent systems to search and contracting Tourism services 53

João Ferreira de Santanna Filho, Scheila Nair Costa, Camila Pontes Brito
Da Costa, Charbel Szymanski and João Eduardo Hornburg

A multiagent approach for detecting and mitigating DDoS attacks 61

João Pereira, Marcos Simpĺıcio Jr and Anarosa A. F. Brandão

A BDI-Fuzzy Agent Model for exchanges of non-economic services based on the
social Exchange theory . 67

Giovani Farias, Graçaliz Pereira Dimuro and Glenda Dimuro

Integrating CartAgO Artifacts for the Simulation of the Social Production and
Management of Urban Ecosystems: the case of San Jerónimo Vegetable Garden
of Seville, Spain . 73

Flávia Cardoso Pereira dos Santos, Henrique Donâncio Rodrigues, Thiago
Fredes Rodrigues, Glenda Dimuro, Diana Adamatti, Graçaliz Pereira Dimuro
and Esteban de Manuel Jerez

A MAS for the Simulation of Normative Policies of the Urban Vegetable Garden
of San Jerónimo, Seville, Spain . 79

Henrique Rodrigues, Iverton Santos, Glenda Dimuro, Graçaliz Dimuro, Diana
Adamatti and Esteban Jerez

TrustE - An Emotional Trust Model for Agents . 85

Guilherme Klein da Silva Bitencourt, Ricardo Azambuja Silveira and Jerusa
Marchi

Using the JaCaMo framework to develop a SMA for the MAPC 2012 Ägents on
Marss̈cenario . 91

Mariana Ramos Franco and Jaime Simão Sichman

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model
Checking . 97

Rui C. Botelho A. S., Aline M. S. Andrade, Frederico Barboza and Augusto
Loureiro da Costa

IV Short Papers - Resumos estendidos

Organizational Modelling of a Multiagent System based in a Theater Play 105

Tatiane Dobrzanski, Gleifer Vaz Alves and Antônio Carlos da Rocha Costa

Modeling Software Project Management with Norms and Reputation 109

Davy Báıa, Elder Cirilo and Carlos Lucena

Integrating the Organizational Model Moise+ to a Cognitive Agent Architecture
applied to Robocup Simulator 2D . 113

Eder Mateus Gonçalves and Mateus Fogaça

Behavior Editor for Agents Based on Service Oriented Architecture 117

Saulo Popov Zambiasi and Ricardo J. Rabelo

Model Oriented Approach to Code Generation for Normative Multi-Agent Systems 121

Robert Rocha Júnior, Emmanuel Sávio Silva Freire and Mariela Inés Cortés

Development of a communication mechanism between Pedagogical Agents in a
Virtual Learning Environment . 125

Geovane Griesang, Rejane Frozza, Rolf Fredi Molz, Gilberto Dessbesell Jr and
Rafael Pieter

Collection Module Data to Support Pedagogical Agent Affective 129

Marcus Rosa and Andrea Konzen

Animated pedagogical agent as learning companion . 133

Let́ıcia Couto, Jun H. Silva, Carla A. Barvinki and Valguima. V. V. A.
Odakura

Dynamic Modeling of Multi-Agent Systems Using MAS-ML Tool 137
Francisco Lima, Állan Feijó, Robert Rocha, Igor Nogueira, Enyo Gonçalves,
Emmanuel Sávio Freire and Mariela Cortés

Two Different Perspectives about How to Specify and Implement Multiagent
Systems . 141

Andre Mendes Da Rosa, Alexander Gularte, Eder Mateus Nunes Gonçalves
and Mateus Jung

Multiagent Systems in Travel Planning . 145
Diego Fialho Rodrigues, Heber Amaral, Simone Costa and Alcione Oliveira

Towards a fault model for BDI agents: an initial study . 149
Francisco Cunha, Elder Cirilo and Carlos Lucena

Simulating Consumers Energy Profiles through Multiagent Systems 153
Fernanda Mota, Vagner Rosa, Silvia Botelho and Graçaliz Dimuro

Multiagent Systems Simulation of Dengue in Minas Gerais (Brazil) 157
Katia Cristina Aparecida Damaceno Borges, Willian Magno Pereira Reis and
Alcione De Paiva Oliveira

Use of HPC in Agent-Based Social Simulation: A Case Study on Trust-Based
Coalition Formation . 161

Luciano Rosset, Luis Nardin and Jaime Sichman

Using Interest Management to Improve Load Balancing in Distributed Simulations 165
Felipe C. Bacelar, Carlos J. P. Lucena and Pierre Bommel

Simulation and Analysis of Malaria Using Multiagent Systems 169
Laurence Marcos Costa and Diana Francisca Adamatti

Agent-Based Simulation to a Decision Support System to Pollutant Dispersion . . . 173
Narúsci Bastos and Diana Francisca Adamatti

A Brownian Agent approach for modeling and simulating the population
dynamics of the schistosomiasis contagion . 177

Renato Luciano Cagnin, Ivan Rizzo Guilherme, Alexandro José Baldassin and
Filipe Marcel Fernandes Gonçalves

Self-Regulation of Social Exchange Processes in MAS: a cultural and evolutionary
BDI agent society model . 181

Andressa von Laer, Graçaliz Dimuro and Marilton Aguiar

In-silico Simulation of Indoor Panic Situations using Reactive Agents 185
Giorgio Torres, Willian Farago and Alcione Oliveira

Using Agent Coordination Techniques to Support Rescue Operations in Urban
Disaster Environments . 189

Alan D. Barroso, Felipe De C. Santana, Victor Lassance, Luis Gustavo
Nardin, Anarosa A. F. Brandão and Jaime S. Sichman.

Using DCOP to Model Resource Allocation: A Review of Algorithms 193
Alexander Gularte and Diana Adamatti

Authors Index - Índice de Autores . 197

Parte I

Invited Speakers - Palestras
Convidadas

On agent collaboration, games and coalitions

Onn Shehory

Bar Illan University

IBM Research Labs

Israel

onn@il.ibm.com

Abstract—Agents in the context of others typically have to interact and collaborate to meet their goals. Agent collaboration calls

for mechanisms from game theory and relaxation thereof. Multiple games have been considered to facilitate collaboration, and

many mechanisms have been devised. Yet it appears that the most widely studied class of games and mechanisms surround coalition

and team formation. Within coalitions, agents may jointly perform tasks that they would otherwise be unable to perform, or will

perform poorly. To allow agent collaboration via coalitions, one should devise a coalition formation mechanism that exhibit

desirable properties such as stability, fairness, optimality, and computational tractability. In this talk we will present agent

attributes which affect interaction, games which facilitate interaction, and mechanism which implement feasible solutions to such

games. Part of talk will focus on coalition formation mechanisms.

Keywords—agents; collaboration; coalitions; games

On agent collaboration, games and coalitions

3

Coordination in multi-agent systems:

dimensions and mechanisms

Amal El Fallah Seghrouchni
LIP 6 – Université Pierre et Marie Curie

Paris, France

amal.elfallah@lip6.fr

Abstract—A multiagent system (MAS) is populated by multiple autonomous agents that interact to solve complex tasks, to enhance

the system’s overall utility while improving their individual performance. Hence, coordinating the behaviors of multiple agents acting in

the same environment is an important issue in the multi-agent systems domain. This talk will address the MAS coordination as a

process by which, a system of agents are lead to work together harmoniously. It will present the several dimensions of coordination as

well as the main mechanisms developed in MAS field, in particular for cognitive agents.

Keywords—multiagent systems; coordination; cognitive agents

Coordination in multi-agent systems: dimensions and mechanisms

5

Agents and Traffic Simulation

Ana Bazzan
Instituto de Informática - UFRGS

Porto Alegre - Brazil

bazzan@inf.ufrgs.br

Abstract—This talk addresses the following points: i) problems related to the increasing demand for mobility in modern society; ii)

four facets of intelligent transport and traffic systems: modeling and simulation, advanced travelers' information systems (ATIS),

management, traffic control and optimization, and new technologies (autonomous vehicles and automation of infra-structure); iii) how

agents can contribute to make cities smarter; iv) current work and recent results of the multi-agent systems group at the computer

science institute at UFRGS.

Keywords—traffic simulation, advanced traveler´s information systems

Agents and Traffic Simulation

7

Parte II

Short Courses - Oficinas

Coordination of Complex Systems based

on Multi-Agent Planning

Amal El Fallah Seghrouchni
LIP 6 – Université Pierre et Marie Curie

Paris, France

amal.elfallah@lip6.fr

Abstract—Handling and the coordination of plans for the achievement of different goals is an important issue of planning, in

particular when several agents (robots) are mobile within a shared and dynamic environment. This lecture will present an overview of

planning technics and coordination mechanisms developed for multi-agent systems. Then, it will present some significant approaches we

have developed for the coordination of temporal multi-agent plans. We present a first framework based on hybrid automata to

represent and handle temporal plans of agents. The coordination of such plans and their synchronization within a multi-agent plan will

be discussed and illustrated in the context of aircraft simulation. Then, we introduce a second framework where coordination

mechanisms have been established to deal with temporal plans of different priorities. This framework will be illustrated on two

scenarios : a Proactive-Reactive Coordination Problem (PRCP) where an agent has to modify its temporal plan in order to remove any

conflicts with the plan of another agent having higher priority ; and a Coordinated Planning Problem (CPP), where an agent has to

compute a plan for the achievement of its own goals, but without violating the constraints of another agent’s higher priority plan and

utilizing where possible the cooperative opportunities offered by the latter.

Keywords—multiagent systems; coordination; cognitive agents; planning

Coordination of Complex Systems based on Multi-Agent Planning

11

Agent-Oriented Software Engineering:

Current State and Future Directions

Michael Winikoff
University of Otago

New Zeland

michael.winikoff@otago.ac.nz

Abstract—The field of Agent-Oriented Software Engineering (AOSE) is concerned with the engineering aspects of developing agent-

based systems, and how to support their development. Specifically, work in AOSE aims to provide practitioners with methodologies for

the design of agent systems, and with supporting tools. A methodology can be seen as defining an overall process, where design artifacts

(``models'') are used to capture key outcomes of the process. These design artifacts are expressed using one or more notations (which

may be more or less formally defined). It is important that a methodology provide detailed usable guidelines for how to carry out key

steps. For example, if a methodology says that the second step in the overall process is to identify the goals of the system, then this is not

much use to the designer without some indication of the sorts of techniques that could be used to identify the goals. Work in the field

varies in its focus: some papers take a higher-level view and describe whole methodologies, whereas others focus on a particular part or

aspect of the software development process, for example, extending the modeling notation to better represent organizational aspects, or

providing techniques for testing agent systems. This short-course will briefly review the history of AOSE, and then survey where the

field of AOSE stands. Finally, the future of the field will be discussed: what are key directions and challenges for AOSE?

Keywords—agent-oriented software engineering, survey

Agent-Oriented Software Engineering: Current State and Future Directions

13

Modelling social influence among agents

Fred Amblard
Université de Toulouse

Toulouse, France

frederic.amblard@ut-capitole.fr

Abstract—In this course, I will first present different social phenomena that could be describe as typical cases of social influence

(opinion dynamics, culture formation, attitude dynamics…). Hereafter, I will present partly the theoretical ground of these phenomena

mostly from social psychology. I will then present different simple models that enable to capture and render those dynamics. I will end

this course on the particular role played but social networks in such a context, where they are at the same time the support of social

influence among agents (I adopt the attitude of my friends) and also an effect of such social influence (I tend to become friend with

people sharing the same attitude)

Keywords—social simulation; modeling

Modelling social influence among agents

15

Building AOSE Situational Methods

Using Method Fragments

Sara Casare
Laboratório de Técnicas Inteligentes - USP

São Paulo - Brazil

sjcasare@uol.com.br

Abstract—Multi-Agent Systems (MAS) provide a new paradigm for conceptualizing, designing, and implementing software systems,

ranging from manufacturing to process control, air traffic control, and information management. They are particularly attractive for

creating software that operates in distributed and open environments, such as the Internet, and which simulates scenarios that serve as

basis to create public policies and strategies to deal with complex problems, such as rescue after natural disasters and evacuation of

public facilities. Nevertheless, in order to be adopted by the software industry, a controlled and disciplined way to conduct software

development projects related to the aforementioned domains is needed. Despite the research community efforts while proposing

methods for structuring and guiding the development of MAS, AOSE methods are still at an early stage, mainly being applied in the

context of academic projects. Moreover, the development of complex systems using MAS requires specific methods and then the use of

Situational Method Engineering techniques for MAS seems to be a promising solution for it. Thus, considering the class of problems

whose solutions are tailored for adopting the MAS paradigm and which depends on organization and coordination, it could be benefited

by using an organization-centered approach, through the adoption of some organizational model for MAS combined with some agent

(or multiagent)-based software development method. Currently, a project team that looks for a disciplined way to develop a MAS

application involving such organizational characteristics will not find a method ready to be used. An example of such a real application

could be an information system to support the adoption of strategies for evacuating huge facilities under bomb threats. In this

minicourse we will address such problems, by introducing a process for building methods out of reusable parts of methods - the so-

called method fragments - to support the development of organizational-centered MAS. At the end of the tutorial, its audience must be

able to build MAS situational methods for such a class of problems. Also, they will be encouraged to use the process to build MAS

situational methods tailored to other classes of problems as well

Keywords— multiagent systems; agent-oriented software engineering; situational method engineering

Uma introdução a engenharia de métodos situacionais para SMA

17

Programming Multiagent Systems

Jomi Fred Hubner
Departamento de Engenharia de Automação e Sistemas - UFSC

Florianópolis - Brazil

jomi@das.ufsc.br

Abstract—In this course we will give a survey about agent-oriented programming and show how this paradigm was combined with

organization-oriented programming and environment-oriented programming to yield multiagent programming. It will focus in a

particular platform called JaCaMO, an integration of the platforms Jason (for agent-oriented programming), Cartago (for

environment-oriented programming) and MOISE (for organization-oriented programming). It includes a hands on session in a lab.

Keywords— multiagent systems; multiagent programming

Programação orientada a Multiagentes

19

Parte III

Full Papers - Artigos Completos

A Language to Specify the Interaction Considering
Agents, Environment, and Organization

Maicon R. Zatelli, Jomi F. Hübner
Department of Automation and Systems Engineering

Federal University of Santa Catarina (UFSC)
Florianópolis, SC, Brazil
{maicon,jomi}@das.ufsc.br

Abstract—Interaction is a subject widely investigated in
multi-agent systems (MASs), but there are still some open
issues. Beyond the interaction usual between agents, we can
conceive other kinds, like the interaction between agents and
environment, or between agents and organization. These other
kinds allow us to consider several situations that are not limited
to speech acts. For example, the interaction between agents and
environment allow us to define actions and events in interaction
protocols, which would not be possible to represent with just
the concept of speech act. In this paper we propose a language
to specify the interaction considering the environment, organi-
zation, and agents. We also present a sketch of a dynamic of
execution and some examples of protocols.

Keywords-interaction; language; AEIO; environment; orga-
nization

I. INTRODUCTION

This work is based on the AEIO approach (Agent, Envi-
ronment, Interaction, Organization) [1], which conceives a
multi-agent system (MAS) as composed of four basic com-
ponents: agents, environment, interaction, and organization.
Therefore, an MAS is not only based on the existence of
agents, but there are other elements equally important. The
developer should be able to see each of these parts clearly
and separately.

Nowadays, it already exists many works about agents,
organization, and environment. There are tools to specify,
develop, and execute each one. For example, an MAS
developer is able to build the environment by means of
CArtAgO [2], the organization by means of AGR [3],
ISLANDER [4], Moise [5], and so forth, and finally, the
agents by means of GOAL [6], JADE [7], Jason [8], and so
on. There are also tools to link these components to work
together, such as JaCaMo [9]. However, none of the current
tools provide features to specify and execute the interaction
considering the existence of the three other components, that
is, to define the interaction between agents, between agents
and environment, and between agents and organization. As a
consequence, the interaction is specified inside of the other

The authors are grateful for the support given by CNPq, grants
140261/2013-3 and 306301/2012-1

MAS components, which results in difficulties to maintain,
to reuse code, to debug, to work with open systems, etc.

In [10] we presented some advantages to separate the
interaction of the other MAS components. With a separated
interaction component it is possible to provide tools to
improve debugging, because we can monitor the MAS
execution from the interaction viewpoint. Moreover, as our
proposal considers the interaction with the environment by
means of actions or events, it is possible to represent how
the agents have to proceed to interact with the several
elements in the environment. We can also improve the use
of open systems, where the agents can be heterogeneous.
Open systems can be improved because the agents do not
need to know in advance how to interact with the several
elements in the MAS, but they just need to know how to
handle the interaction component. Afterwards, the agents
can follow the interaction specification to interact with the
other MAS elements. Therefore, the migration of the agents
to other MAS is also facilitated. In addition, the proposed
model helps the agents to accomplish their organizational
goals. The agents usually receive the goals related to their
roles, but they do not receive what they must do to achieve
them. In this case, the interaction helps the agents with a
well-defined sequence of steps, including actions, messages,
and events, which institutionalizes how the agents should
interact to achieve the goals. Finally, a separated interaction
component improve the reuse of code and the maintenance
in an MAS because the whole interaction code is written
separately from the rest of the system, which facilitates to
visualize, to locate, and to change/update the interaction
code.

Since the current languages are not suited to specify the
interaction with the other MAS components, in this paper,
our aim is to propose a programming language to specify
interaction protocols considering the organization, the envi-
ronment, and the agents (section III). This language follows
the interaction model introduced in [10], where an unified
and coherent interaction model is proposed (section II). In
the proposed language, we have added some features to
represent interaction protocols for several different scenarios.
Furthermore, we also present a sketch of a dynamic of exe-

A Language to Specify the Interaction Considering Agents, Environment, and Organization

23

Figure 1: Conceptual model.

cution (section IV) and some examples of protocols. Finally,
before conclusion, we show the results and discussion with
some related work.

II. CONCEPTUAL MODEL

This section briefly presents how the several MAS compo-
nents are conceptually integrated with the interaction. Only
the core ideas of the model are described here and examples
will be presented in the next sections. More details can be
found in [10].

In this model, the concepts of the other components were
mapped onto the interaction concepts. Figure 1 shows the
four MAS components and the links between the interaction
and the others. In order to keep the figure clear and clean,
we only show the concepts that were used in the model. The
most important concept in our model is the interaction pro-
tocol, which is composed of a set of participants, transitions,
states, and goals. Each transition links two states and it can
be fired by an event, a message, or an action. The following
paragraphs briefly explain how the other components are
connected.

Protocols are linked to organizational concepts1 in four
points (top of Figure 1). When a protocol finishes success-
fully, an organizational goal is considered achieved. Other
organizational concepts used in the interaction component
are the roles, which constrain the participation of agents in
the protocol; the obligations, which agents have to follow
in order to accomplish the protocol; and the operations,
which are the actions that some agent can perform in the
organization such as adopt or leave some role.

The environment2 also has some important concepts to
be considered in the interactions. We mapped the concept
of artifact onto a participant in the interaction component,

1Organizational concepts are explained in more details in [5], [11].
2Environment concepts are explained in the A&A meta-model introduced

in [12].

Figure 2: Language grammar.

which constrains the participation of artifacts in the protocol;
the operations, which represent the actions that the agents
can perform in the environment; and finally, the observable
events, which agents can perceive in the environment such
as an alarm, the color of something, etc.

In the end, the agent component provides the concepts
of action, which can be some action performed in the envi-
ronment or in the organization, and the message exchange,
which represents the use of communicative acts to interact
with the other agents.

III. A LANGUAGE TO SPECIFY INTERACTION
PROTOCOLS

In this section, we map the concepts presented in Fig-
ure 1 onto a programming language to specify interac-
tion protocols3. Figure 2 presents the language grammar
with its non-terminal symbols. A protocol is composed
of a name, a description (represented by the non-terminal
description), goals that will be achieved (represented
by the non-terminal goals), participants (represented by
the non-terminal participants), states (represented by
the non-terminal states), and transitions (represented by
the non-terminal transitions). We explain the main
language features in detail by means of some examples.

Protocol 1 presents a first example, where the aim is to
perform an election between the agents. The participation of
the agents is defined in line 5, which state that they must
play the role elector in the organization. The protocol
includes the participation of a ballot box artifact to help the
agents to vote in an anonymous approach (line 6).

The protocol is composed of three states (line 7): n1, n2
e n3, where n1 is the initial state and n3 is the final state.

3Due the lack of space we will only present the most important parts of
the language.

Zatelli and Hubner

24

Protocol 1 Election protocol.
1. protocol election {
2. description: "Do an election";
3. goals: "electLeader";
4. participants:
5. playerElector agent "elector" all;
6. artBallotBox artifact "artifacts.BallotBox";
7. states: n1 initial; n2; n3 final;
8. transitions:
9. n1 - n2 # playerElector -- action "vote(X)" -> artBallotBox

: ".string(X) & .is_agent(X)";
10. n1 - n2 # timeout 30000;
11. n2 - n3 # artBallotBox -- event "winner(Y)" -> playerElector;
12. }

The available transitions from state n1 are those defined in
lines 9 and 10. The first one can be triggered only by agents
participating as playerElector in the protocol by doing
the action vote(X) on the artifact artBallotBox (the
ballot box). Moreover, when the protocol is in the state n1
an obligation to perform the action vote(X) is created for
the agents playing elector. Although created from a fact
in the interaction component, this obligation exists in the
organizational component of the MAS.

Note that a transition between n1 and n2 is defined with a
timeout (line 10). The timeout is important in situations
where the temporal constraints are fundamental, such as the
time that an agent must wait for the proposals of the others
in an auction. Moreover, the liveness in the protocol can be
improved by means of a timeout, that is, the protocol will
always achieve a final state.

The last transition (line 11) of the protocol defines that
the participant artBallotBox must count the votes and
emits an observable signal named winner(Y), where Y
is the winner name. With the successful termination of
the protocol, the goal electLeader is achieved in the
organization (line 3).

A second example of protocol (Protocol 2) describes the
situation where a virtual agent decides to buy something in
a website. The new protocol has three states (line 7): k1,
k2, and k3, where k1 is the initial state and k3 is the final
state. The first transition (line 9) defines that the agent that
is playing the participant playerCustomer must send
a message to the agents that are playing the participant
playerSeller telling them that it needs some seller. The
next transition (line 10) defines that the sellers must perform
an election to decided which one will attend to the client.
This transition has an import directive, which allows the
composition of protocols. The address of the sub-protocol
and a mapping between the participants of both protocols
are necessary and since the election protocol was already
specified before, then the composition allows reusing it.

The transition with the import directive (line 10) notifies
the interpreter to establish a link between the state k2 and
the initial state of the election protocol. All final states of the
election protocol are mapped to the state k3. The other states
of the election protocol are just renamed to avoid the clash of
identifiers. For example, the state n2 of the election protocol

Protocol 2 Attending protocol.
1. protocol attending {
2. description: "Serve a costumer";
3. goals: "chooseSeller";
4. participants:
5. playerCustomer agent "client";
6. playerSeller agent "seller" all;
7. states: k1 initial; k2; k3 final;
8. transitions:
9. k1 - k2 # playerCustomer -- message[tell] "needSeller" -> playerSeller;

10. k2 - k3 # import "election.ptl" mapping { playerSeller playerElector; };
11. }

Protocol 3 Composition between the attending and election
protocols.
1. protocol attending {
2. description: "Serve a customer";
3. goals: "chooseSeller";
4. participants:
5. playerCustomer agent "client";
6. playerSeller agent "seller" all;
7. artBallotBox artifact "artifacts.BallotBox";
8. states: k1 initial; k2; n2[k2]; k3 final;
9. transitions:

10. k1 - k2 # playerCustomer -- message[tell] "needSeller" -> playerSeller;
11. k2 - n2[k2] # playerSeller -- action "vote(X)" -> artBallotBox

: ".string(X) & .is_agent(X)";
12. k2 - n2[k2] # timeout 30000;
13. n2[k2] - k3 # artBallotBox -- event "winner(Y)" -> playerSeller;
14. }

is renamed to [k2] because the state n2 is the result of the
composition between the attending protocol and the election
protocol by means of the state k2. The state names should
be chosen carefully to keep the protocol understandable.

Another element that exists in the import directive
is a mapping between the participants that exist in the
attending protocol onto the participants that exist in the
election protocol. In the example, the playerElector
in the election protocol will be replaced by the partici-
pant playerSeller of the attending protocol while the
participant artBallotBox is preserved. The description
and goals of the election protocol are discarded due to the
composition. The result of the composition between both
protocols is presented in Protocol 3.

The language also provides two different kinds of cardi-
nality: the participant cardinality and the transition cardinal-
ity. The former is related to the number of necessary entities
to play some participant in the protocol. The latter is related
to the number of entities that are necessary to perform the
duty specified in some transition.

The participant cardinality is represented by means of the
non-terminal symbol partCardinality. Broadly speak-
ing, it defines the minimum and the maximum number of
entities that must play some participant. While the minimum
cardinality is represented by a number, the maximum cardi-
nality also can be a number or even the all or + directives.
The all directive informs the interpreter that all agents
that are playing some organizational role or all artifacts that
are of some type must play the participant. The + directive
informs the interpreter that the number of required entities
must be between one and the total of entities that the all
directive calculates.

In contrast to the participant cardinality, the transition

A Language to Specify the Interaction Considering Agents, Environment, and Organization

25

cardinality allows just numeric values. Its aim is to define
a minimum number of entities that must perform or un-
dergo some occurrence specified in the transition. The non-
terminal pCardOccur, next to the transition participant
(between square brackets), represents the transition cardi-
nality. By default, the omission of the transition cardinality
results in the use of the same value that exists in the
participant cardinality, meaning the participant cardinality
and the transition cardinality are the same. There are four
situations that can be represented by means of the transition
cardinality. The first situation (player1[1] -- action
"foo" -> player2) informs that at least one agent
(left side) needs to execute some action in all artifacts
(right side), that is, all artifacts must undergo at least one
action. The second one (player1 -- action "foo"
-> player2[1]) informs that all agents must execute an
action in at least one artifact. The third one (player1[1]
-- action "foo" -> player2[1]) informs that at
least one agent is necessary to execute an action in at least
one artifact. The latter (player1 -- action "foo"
-> player2) informs that all agents must execute an
action in at least one artifact and all artifacts must undergo
at least one action.

Finally, the non-terminal duty defines what must be
performed to fire the transitions and each transition may
have several different verifications (represented by the non-
terminal trigger) to make sure whether the occurrence is
valid to fire it. The non-terminal trigger is composed of
an expression to evaluate the occurrence pattern (represented
by the non-terminal pattern) and an expression to evalu-
ate the occurrence content (represented by the non-terminal
content). If the pattern is omitted, the expression
defined in the non-terminal duty will be considered as the
pattern. For example, consider the action vote(X) pre-
sented in Protocol 1. The agent receives this obligation and
it has to perform the action vote. As the pattern is omitted,
the expression specified in the duty (i.e. vote(X)) is used
as the pattern. Next to the symbol : (line 9), it is defined the
expression to evaluate the content of the action. Suppose the
agent tries to execute something like vote("Ana",22).
This action is not valid because it does not unify with the
pattern vote(X), then the action is discarded. However,
suppose that the agent performs the action vote(22). This
action follows the pattern because it unifies the pattern (with
X = 22), however the action is invalid because 22 is not a
String as required by the content. Finally, suppose the
agent tries to execute the action vote("Ana"). In this
case, we have X = "Ana" and "Ana" is a String. In
the case where Ana is also an agent, the action is valid to
fire the transition.

IV. SKETCH OF THE DYNAMIC OF EXECUTION

In this section, we briefly present the dynamic of execu-
tion. In an MAS with organization, the agents usually adopt

a role and start working to accomplish the organizational
goals related to its role. In the case where the goal has
a protocol specified, the agent can instantiate it in order
to achieve the goal. After the instantiation, the agent must
ask the other agents to join the scene and must add the
artifacts that will attend the scene. For example, in a scene
of the Protocol 1, it is necessary the definition of the agents
that will play the participant playerElector and also the
artifact the will play the participant artBallotBox. Once
the participating artifacts and agents are defined, the agent
can start the execution of the scene. When the scene starts,
it enables the transitions of the initial state and also creates
the related obligations into the organization. Afterwards,
the agent can follow the obligations in order to accomplish
the protocol. For example, an obligation is created into the
organization for all electors that are attending the scene of
the Protocol 1 to obligate them to perform their votes when
the scene starts.

Throughout the MAS execution, several occurrences
(messages, actions, events) are intercepted and sent to the
scenes. Then, the occurrences are processed in order to
check whether they are valid to fire some enabled transi-
tion. For example, the agent Bob can execute the action
vote("Ana") and this action must be intercepted and
added in a queue to be processed afterwards.

The evaluation process occurs as following. While the
invalid occurrences must be discarded, the valid ones must
be added in a set and when the occurrences satisfy the
cardinality of some enabled transition, the transition can fire
and make the scene achieve a new state. The cardinality
of a transition is satisfied when two conditions are true:
(i) the number of valid occurrences that have the source
entities that are playing the responsible participant of the
transition is greater or equal to the cardinality specified for
the responsible participant of the transition; (ii) the number
of valid occurrences that have the target entities that are
playing the target participant of the transition is greater or
equal to the cardinality specified for the target participant of
the transition.

For example, in a scene that executes the election protocol
(Protocol 1), all electors are obligated to perform their votes.
Thus, the agents must execute the action vote on the ballot
box artifact. Each vote action that was performed is pro-
cessed according to their informations, such as the agent that
performed the vote, the description of the action vote with its
parameters, and the ballot box that was used. Suppose the
vote actions of all electors were processed and they were
considered valid actions, however the vote action performed
by the agent Bob still needs to be processed. Considering the
same action vote("Ana") used in section III, note that it
is valid to fire the transition between the states n1 and n2,
because it respects the validation expression defined in the
transition. Also, suppose it has the responsible participant as
an elector in the scene, the target participant is a ballot box in

Zatelli and Hubner

26

the scene, and this action is not repeated. As this is the only
action that was lacking to complete the cardinality defined in
the transition (all electors must execute an vote action in one
ballot box), considering this action, the transition n1-n2
can fire and make the scene achieve the next state (n2).

A different situation can happen when some occurrence
is valid but no transition has the cardinality satisfied to fire.
For example, this situation could happen in some election
with more than one elector. Even if some agent executes
the action vote("Ana"), which is a valid vote action, it
will be necessary to wait for all vote actions from the other
electors to fire the transition between the states n1 and n2.

Another way to achieve a new state is when some timeout
happens. If no transition is fired in time, then a timeout can
happen and the next state is pointed by the timeout transition.
For example, in the election protocol (Protocol 1), if not all
electors vote in 30 seconds, defined by the second transition
between the states n1 and n2, then a timeout happens and
the scene achieves the state n2, pointed by the timeout
transition.

Finally, when some transition is fired, the protocol can
achieve a final state and then the organizational goals related
to the protocol must be satisfied. For example, when some
scene of the election protocol (Protocol 1) achieves the state
n3, which is stated as final state, the goal electLeader
must be satisfied in the organization.

V. RESULTS AND DISCUSSION

In order to validate our approach we have integrated it
into JaCaMo platform [9]. JaCaMo is a project that aims
to permit the developer to consider each one of the MAS
components as first class abstractions. Although the agent,
environment, and organization components are already con-
sidered by this platform, the interaction component was not
properly integrated.

Our main contribution is a programming language to
specify interaction protocols considering the agents, environ-
ment, and organization. The aim is to institutionalize how the
agents must interact with the different elements in an MAS
to achieve the organizational goals by means of protocols.
When an agent adopts some role in the organization, the
agent receives the list of goals that it needs to achieve. In
order to achieve them, the agent may look at the interaction
component for a protocol that achieve them. It is useful
since, sometimes, the agents may not know how to proceed
to achieve their goals, then the protocol helps the agents in
this situation by means of a well-defined sequence of steps.

The integration with the organization also helps the agents
to search for partners to cooperate. They can do it reading
the roles in the organization and the agents that are playing
each role. Other important organization concept are the
obligations that are useful to help the agents to follow the
protocols. The obligations facilitate the agent programming
and allow the agents to reason about them, specially whether

the agents already can handle with organizational obliga-
tions. Moreover, such organizational mechanisms allow us
to create punishment and reward mechanisms to prevent
malicious behavior and reward the agents with good per-
formances.

However, even in simple and closed systems, where the
organization may not be necessary, our model needs an
organization, which could require more time to develop the
MAS. Indeed, our proposal is focused in more complex
MAS, composed of agents, environment, and organization.
Our aim is to integrate these components by means of the
interaction and explore the advantages of this kind of MAS.

Other differential of our proposal is to regard the interac-
tion with the environment, which allows the representation
of more scenarios. For example, the language allows the
specification about how the agents have to proceed to
interact with the artifacts by means of actions and events.

The language also provides features like composition, car-
dinality, timeout, which allow the representation of several
scenarios. These features allow improvements to reuse code,
because it is possible to build more complex protocols by
combining simple protocols; to represent real-time situa-
tions, because of the timeout mechanism; to comprehend the
protocol, since the language is suited to conceive interaction
protocols and it is written as a whole; etc.

The model can also be used in open systems where
the agents can be heterogeneous. The separation of the
interaction component of the other MAS parts endows the
system with this capacity. The agents can join the MAS,
play some role and read the interaction protocols in run-
time. In order to do it, the agent must know how to follow
protocols by means of obligations and then, the agent is able
to learn new protocols and to interact with other agents or
even with the environment. In addition, we can change the
protocol specification without change the agent code. Indeed,
it would be necessary for an agent to communicate with
other agents if it does not understand what is the meaning
of some protocol step that was modified. Finally, even in
the case of open and heterogeneous MAS, a global behavior
can be defined for the overall system.

A. Related Work

As already presented in [10], the interaction in MAS
has several different approaches. Most of approaches do
not consider the interaction between the agents and the
environment or between the agents and the organization [3],
[4], [11], [13]–[18], but some of them already try to conceive
an interaction model that handles the interaction with the
other components [19]–[23]. However, their aim is different
than ours. For example, their interaction specification is
conceived to be handled by humans during the MAS design
and do not allow the agents to read it (or eventually
to change it) at run-time. Furthermore, in [21], [22], the
organization is considered in a simplified version, just with

A Language to Specify the Interaction Considering Agents, Environment, and Organization

27

roles, because their focus is to deploy a different way to use
the environment during the interactions.

The MERCURIO framework [23], a very similar work
to ours, focuses on interaction regarding agents and envi-
ronment. The environment conception considers the actions
performed by the agents and the event that the agents
may sense. The limitation of MERCURIO is related to the
organizational component. The roles in the interaction are
not strongly connected with the roles existing in the orga-
nization. The existence of the other organizational concepts
is not considered either. Indeed, the aim of MERCURIO is
to deploy the interaction with the environment.

On the other hand, MAS-ML [19] and O-MaSE [20]
are a modeling language and a methodology, respectively,
that consider the interaction integration with the three
other components. Both approaches are conceived for the
specification phase, not regarding the implementation and
execution phases. For example, these methodologies do not
provide a feature to generate the interaction code. Therefore,
our work contributes to fill the gap between this specification
and the implementation.

REFERENCES

[1] Y. Demazeau, “From interactions to collective behaviour in
agent-based systems,” in Proc. of EuroCogSci, Saint-Malo,
1995, pp. 117–132.

[2] A. Ricci, M. Viroli, and A. Omicini, “CArtAgO: An in-
frastructure for engineering computational environments in
MAS,” in Proc. of E4MAS, D. Weyns, H. V. D. Parunak, and
F. Michel, Eds., AAMAS 2006, Hakodate, Japan, 2006, pp.
102–119.

[3] J. Ferber, O. Gutknecht, and F. Michel, “From agents to or-
ganizations: An organizational view of multi-agent systems,”
in Proc. of AOSE. Springer, 2003, pp. 214–230.

[4] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L.
Arcos, “Ameli: An agent-based middleware for electronic
institutions,” in Proc. of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems - Volume
1, ser. Proc. of AAMAS. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 236–243.

[5] J. F. Hübner, J. S. Sichman, and O. Boissier, “A model for
the structural, functional, and deontic specification of organi-
zations in multiagent systems,” in Proc. of SBIA. London,
UK: Springer, 2002, pp. 118–128.

[6] K. V. Hindriks, “Programming rational agents in GOAL,”
Multi-Agent Programming: Languages and Tools and Appli-
cations, pp. 119–157, 2009.

[7] L. Braubach, E. Pokahr, and W. Lamersdorf, “Jadex: A
bdi agent system combining middleware and reasoning,” in
Ch. of Software Agent-Based Applications, Platforms and
Development Kits. Birkhaeuser, 2005, pp. 143–168.

[8] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Program-
ming multi-agent systems in AgentSpeak using Jason. Liv-
erpool: Wiley, 2007.

[9] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and
A. Santi, “Multi-agent oriented programming with JaCaMo,”
Science of Computer Programming, 2011.

[10] M. R. Zatelli and J. F. Hübner, “A unified interac-
tion model with agent, organization, and environment,” in
Anais do IX Encontro Nacional de Inteligência Artificial
(ENIA@BRACIS), Curitiba, Brazil, 2012.

[11] V. Dignum, J. Vázquez-salceda, and F. Dignum, “Omni:
Introducing social structure, norms and ontologies into agent
organizations,” in Proc. of PROMAS. Springer, 2004, pp.
181–198.

[12] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the A&A
meta-model for multi-agent systems,” Autonomous Agents
and Multi-Agent Systems, vol. 17, pp. 432–456, 2008.

[13] E. Platon, N. Sabouret, and S. Honiden, “Overhearing and
direct interactions: point of view of an active environment, a
preliminary study,” in Proc. of E4MAS. Springer, 2005, pp.
121–138.

[14] D. Keil and D. Q. Goldin, “Indirect interaction in environ-
ments for multi-agent systems,” in Proc. of E4MAS, 2005,
pp. 68–87.

[15] J. Saunier and F. Balbo, “Regulated multi-party commu-
nications and context awareness through the environment,”
Multiagent Grid Syst., pp. 75–91, 2009.

[16] O. Boissier, F. Balbo, and F. Badeig, “Controlling multi-party
interaction within normative multi-agent organizations,” in
Proc. of MALLOW, 2010, pp. 17–32.

[17] A. Hübner, G. P. Dimuro, A. C. R. Costa, and V. L. D. Mattos,
“A dialogic dimension for the Moise+ organization model,”
in Proc. of MALLOW, 2010, pp. 21–26.

[18] M. P. Singh, “Information-driven interaction-oriented pro-
gramming: BSPL, the blindingly simple protocol language,”
in Proc. of AAMAS, 2011, pp. 491–598.

[19] V. T. Silva, R. Choren, and C. J. P. de Lucena, “A uml
based approach for modeling and implementing multi-agent
systems,” in Proc. of AAMAS. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 914–921.

[20] S. A. DeLoach and J. L. Valenzuela, “An agent-environment
interaction model,” in Proc. of AOSE. Berlin, Heidelberg:
Springer, 2006, pp. 1–18.

[21] E. Oliva, M. Viroli, A. Omicini, and P. Mcburney, “Argumen-
tation and artifact for dialogue support,” in Argumentation
in Multi-Agent Systems, ser. LNAI. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 107–121.

[22] Y. Kubera, P. Mathieu, and S. Picault, “Interaction-oriented
agent simulations: From theory to implementation,” in Proc.
of ECAI. Patras, Greece: IOS Press, 2008, pp. 383–387.

[23] M. Baldoni, C. Baroglio, F. Bergenti, E. Marengo, V. Mas-
cardi, V. Patti, A. Ricci, and A. Santi, “An interaction-oriented
agent framework for open environments,” in Proc. of AI*IA.
Berlin, Heidelberg: Springer, 2011, pp. 68–79.

Zatelli and Hubner

28

Extending deontic interpreted systems with action
logic

Raquel de Miranda Barbosa, Antônio Carlos da Rocha Costa
Programa de Pós-Graduação em Modelagem Computacional - PPGMC

Programa de Pós-Graduação em Computação - PPGCOMP
Universidade Federal do Rio Grande (FURG)

Rio Grande - RS, Brasil
{raq.mbarbosa,ac.rocha.costa}@gmail.com

Abstract—This paper presents an extension to deontic inter-
preted systems with the use of action logic for the specification
of normative aspects in multiagent systems. The paper presents
a preliminary formalization of operators required and describes
a simple example of the application of this formalization, using
the segregation model (a simulation model available in NetLogo
platform) through the formalization and proof of some properties
of this system.

Keywords—Deontic Interpreted Systems; Action Logic; Multia-
gent Systems; Norms

I. INTRODUÇÃO

Aspectos formais são frequentemente considerados im-
portantes no processo de desenvolvimento de software, visto
que permitem a descrição de especificações não ambı́guas e
verificações e correções em diferentes etapas do desenvolvi-
mento, entre outros aspectos. Quando se trata do desenvolvi-
mento de sistemas baseados em agentes, não é diferente.
Há uma grande preocupação na formalização de diferentes
aspectos do sistema. Existem diversas teorias formais na área,
as mais comuns baseadas em lógica, porém nem sempre fica
claro o que tais teorias devem representar, como são aplicadas
ao problema em questão e como podem ser integradas em um
processo de especificação e verificação de sistemas.

Quando pensamos em sistemas multiagentes, devemos
considerar dois aspectos importantes: i) seus aspectos orga-
nizacionais, que refletem a estrutura e funcionamento dos
sistemas através da descrição de papéis de agentes, gru-
pos, instituições/organizações e seus relacionamentos; e ii) a
questão de normas (caracterı́sticas regulatórias do sistema), que
ditam como os agentes devem se comportar no sistema, o
que eles devem ou não fazer e até mesmo casos nos quais
os padrões são violados para se atingir um objetivo mais
importante (cf. [1]). Um sistema multiagente que usa normas
(ou baseado em normas) é chamado sistema multiagente nor-
mativo, conforme apresentado em [2]. De acordo com Boella
[2], sistemas normativos são um exemplo de uso de teorias
sociológicas em sistemas multiagentes, i.e., o relacionamento
entre teoria de agentes e ciências sociais como Sociologia,
Economia e Ciência Jurı́dica. Estes conceitos são importantes
em sistemas multiagentes sociais, visto que existe o interesse
no comportamento dos agentes tanto no nı́vel individual como
no social.

A representação de normas em SMA normalmente é feita
através de fórmulas da lógica deôntica, utilizando-se oper-

adores de obrigação (O-obligation), permissão (P-permission)
e proibição (F-forbidden) e conceitos relacionados [3].

Um dos problemas encontrados é que a maioria das
linguagens de especificação não usa operadores deônticos,
dificultando o processo de verificação de compatibilidade do
sistema em relação às suas normas.

Em [4] é apresentada uma formalização para a noção
de conhecimento em sistemas distribuı́dos, onde, embora o
foco seja sistemas distribuı́dos de processadores, estes “pro-
cessadores” podem ser pensados como pessoas ou agentes,
por exemplo. A ideia está baseada no modelo clássico de
mundos possı́veis (cf. [5]), onde diz-se que um agente conhece
um fato ϕ se ϕ é verdadeiro em todos os mundos que ele
considera possı́veis; porém o autor salienta que em sistemas
distribuı́dos não se tem um conhecimento global do sistema.
Em contrapartida, é apresentada uma interpretação concreta
para a noção de mundos possı́veis, identificando o sistema
como um conjunto de runs, onde um run é uma descrição
completa do que acontece no sistema ao longo do tempo. São
definidos pontos como sendo um par (r, t), consistindo de um
run e um tempo e estes pontos do sistema são vistos como
mundos possı́veis. Em qualquer ponto o sistema está em algum
estado global o qual pode ser visto apenas como uma tupla
contendo os estados locais de cada processador.

Esta formalização deu origem à ideia de sistemas inter-
pretados, (cf. [6] e [7]), onde adiciona-se uma função de
interpretação para proposições que descrevem fatos do sistema
e, posteriormente, foi estendida por Lomuscio [8] com a
introdução de conceitos deônticos, permitindo a utilização de
fórmulas com um operador similar ao de obrigação, mas que
representa a ideia de um comportamento ideal/correto de um
agente.

Neste contexto, este artigo apresenta uma aplicação destes
operadores deônticos, definidos por Lomuscio e Sergot para a
descrição de aspectos normativos em sistemas multiagentes,
estendendo-os através do uso de lógica de ações. O ar-
tigo apresenta uma formalização preliminar dos operadores
necessários e descreve um simples exemplo de aplicação desta
formalização em um modelo de Segregação (cf. e.g [9]) através
da prova de algumas propriedades deste sistema.

O modelo de Segregação é um modelo de simulação
disponı́vel na ferramenta NetLogo [10], inspirado nos artigos
de Thomas Schelling sobre sistemas sociais [9]. Este modelo
apresenta dois tipos de agentes que se dão bem uns com os

Extending deontic interpreted systems with action logic

29

outros em um determinado ambiente. Cada um deles quer ter
certeza de que vive próximo de algum outro do mesmo tipo.
A simulação mostra o que acontece em uma população com
estas caracterı́sticas [11].

O artigo está estruturado conforme descrito a seguir. Na
Seção 2 é apresentada a teoria de sistemas deônticos inter-
pretados, na qual este trabalho baseia-se. A Seção 3 descreve
a extensão proposta para tratar sistemas multiagentes norma-
tivos. Na Seção 4 é apresentado um exemplo de utilização
desta proposta, seguida pelas conclusões e trabalhos futuros.

II. SISTEMAS DEÔNTICOS INTERPRETADOS

A noção básica de sistemas interpretados foi introduzida
em [7], onde um sistema é visto como um conjunto de runs.
Se observarmos o sistema em qualquer ponto no tempo, cada
um dos agentes está em algum estado (chamado estado local
do agente), que encapsula toda a informação a qual o agente
tem acesso. O sistema é dividido conceitualmente em dois
componentes: agentes e ambiente (que representa tudo o que é
relevante). O estado global de um sistema descreve o sistema
em um dado ponto no tempo. O estado global com n agentes
é uma tupla (n+1) da forma (se, s1, ..., sn) onde se é o estado
do ambiente e s1, ..., sn são os estados locais do agente i.
Considerando-se que os sistemas não são estáticos, define-se
run como a descrição completa de como o estado global do
sistema evolui no tempo (por exemplo, r(0) representa o estado
global do sistema em uma possı́vel execução 0).

Em [8], [12] descreve-se a adaptação desta noção para
fornecer um fundamento básico para questões deônticas.

Para a caracterização de sistemas interpretados, assume-se
um conjunto P de átomos proposicionais e Ag = {1, .., n} de
agentes.

A linguagem L é definida como segue:

ϕ ::= false | qualquer elemento de P | ¬ϕ | ϕ∧ϕ | Oiϕ(i ∈
Ag)

O operador modal indexado Oi é usado para representar
circunstâncias de funcionamento correto do agente i onde:
Oiϕ pode ser lido como “em todas as alternativas de fun-
cionamento corretamente possı́veis do agente i, ϕ é o caso”, ou
“quando o agente i está funcionando corretamente (em relação
a algum protocolo ou especificação), ϕ é o caso”.

A fórmula ϕ pode se referir tanto a propriedades locais
quanto globais ou a ambas ao mesmo tempo.

O operador modal Pi é o dual de Oi de forma que
Piϕ =def ¬Oi¬ϕ. Piϕ pode ser lido como “em alguns dos
estados nos quais o agente i opera corretamente ϕ ocorre”, ou
“ϕ acontece em algumas das alternativas de funcionamento
correto do agente i”.

A escolha do operador O deve-se ao fato de que sua
semântica é similar àquela do operador de obrigação da lógica
deôntica padrão. No entanto, não é correto ler Oiϕ como “é
obrigatório para o agente i que ϕ”.

No exemplo da Segregação, podemos pensar que o com-
portamento correto do agente é “ser feliz”, ou seja, ele está
vivendo perto de, no mı́nimo, alguns vizinhos do mesmo tipo
(se o agente não está feliz, ele deve mover-se para uma nova

posição). O conhecimento que um agente pode ter em um
determinado estado, por exemplo, é sua posição corrente, se ele
está sozinho e se está feliz. Utilizando o operador Oi podemos
escrever O1happy para representar a proposição “em todas as
alternativas possı́veis de funcionamento correto do agente 1,
ele está feliz”.

Sistemas Deônticos Interpretados de Estados Globais (IDS
- Deontic Interpreted Systems) são definidos em [8], [12], da
seguinte forma:

Um IDS para n agentes é um par IDS = (DS, π),
onde DS é um sistema deôntico de estados globais e π é
uma interpretação para os átomos. Os autores não tratam a
noção de tempo, desconsiderando runs e trabalhando apenas
com estados.

Sistemas deônticos de estados globais são definidos,
assumindo-se que, para cada agente, seu conjunto de estados
locais pode ser dividido em estados permitidos e proibidos
(chamados de estados verdes e vermelhos, respectivamente).
Desta forma, dados n agentes e n+ 1 conjuntos mutuamente
disjuntos e não vazios Ge, G1, ..., Gn, um sistema deôntico de
estados globais é qualquer sistema de estados globais definido
em conjuntos quaisquer Le ⊇ Ge, L1 ⊇ G1, ..., Ln ⊇ Gn.

Um sistema de estados globais para n agentes S é um sub-
conjunto não vazio de um produto cartesiano Le×L1×...×Ln,
sendo L1, ..., Ln os conjuntos de estados locais para cada
agente do sistema e Le o conjunto de estados para o ambiente.

Ge é chamado o conjunto de estados verdes para o ambi-
ente e, para cada agente i, Gi é chamado o conjunto de estados
verdes para o agente i. O complemento de Ge em relação a Le
(respectivamente, Gi em relação à Li) é chamado o conjunto
de estados vermelhos para o ambiente (respectivamente para
o agente i).

Uma coleção de estados verdes e vermelhos identifica uma
classe de estados globais. A classe de sistemas deônticos de
estados globais é denotada por DS.

No caso da Segregação, os estados verdes seriam aqueles
em que o agente está sozinho em uma determinada posição e
está feliz, enquanto os demais seriam considerados vermelhos.

Esta ideia de sistemas deônticos interpretados também é
utilizada em outros artigos que descrevem pesquisas sobre
a representação e raciocı́nio sobre estados de funcionamento
correto e incorreto dos agentes e o sistema como um todo
[8], verificação automática de sistemas deônticos interpretados
através de model checking ([13], [14]), um sistema de tableaux
para sistemas deônticos interpretados [15], entre outros.

III. ESTENDENDO SISTEMAS DEÔNTICOS
INTERPRETADOS COM LÓGICA DE AÇÕES

Em trabalhos anteriores [16], foi investigada a possibil-
idade de utilização de métodos formais tradicionais de en-
genharia de software para a especificação de organizações
de sistemas multiagentes (mais especificamente o método
RAISE e sua linguagem de especificação RSL) e observou-
se que esta linguagem, bem como as demais linguagens de
especificação tradicionais não oferecem suporte ao uso de op-
eradores deônticos para descrever caracterı́sticas de regulação
dos sistemas. No caso particular de sistemas multiagentes, é

Barbosa and Rocha Costa

30

necessário (ou desejável) formalizar aspectos, tais como: o que
o agente sabe em um determinado estado, o que ele pode fazer,
o que acontece quando ele executa certas ações, entre outras
coisas.

Para tratar estas questões, utilizando-se a noção de sis-
temas deônticos interpretados, é necessária uma extensão das
definições propostas por [17], de forma a tratar os aspectos
relacionados à realização de ações pelos agentes, permitindo
a representação de situações do tipo “Em todas as alternativas
de funcionamento correto do agente i, se ele executar a ação
α, ele vai para um estado verde”.

O modelo M é definido como uma tupla

M = (G, π,RKi ,ROi ,Rαi ,ΣA, P), sendo A um conjunto
de ações e i = 1..n (agentes), onde:

• G é um conjunto de estados globais (i.e. g =
〈le, l1, ..., ln〉)

• π é uma interpretação que associa a cada estado em
G uma atribuição de verdade para as proposições
primitivas de P (i.e., π(g) : P → {true, false} para
cada estado g ∈ G).

• RKi é uma relação binária sobre G (i.e.,RKi ⊆ G×G),
tal que para todo g ∈ G existe pelo menos um g′ ∈ G
com g → g′, ou seja, (g, g′) ∈ RKi .

• ROi é uma relação binária sobre G (i.e.,ROi ⊆ G×G),
tal que para g ∈ G, gROi g′, se l′i ∈ Gi (estados verdes
do agente i).

• Rαi (onde α ∈ A) é uma relação binária (de transições
rotuladas) sobre G × G (i.e., Rαi ⊆ G × G), tal que
para todo g ∈ G, gRαi g′ (escrita como g αi→ g’).

• ΣA é um conjunto de ações ou rótulos.

• P é um conjunto de proposições primitivas.

Considerando-se P um conjunto de proposições atômicas,
A um conjunto de ações e i ∈ {1..n} (agentes), o conjunto L
é definido por:

1) ϕ ∈ P implica ϕ ∈ L
2) α ∈ A implica α ∈ LAct
3) ϕ e ψ ∈ L implica ¬ϕ,ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, ϕ↔ ψ

∈ L.
4) ϕ ∈ L implica Oiϕ, Piϕ, Kiϕ ∈ L
5) gi ∈ L
6) ϕ ∈ L, α ∈ LAct implica [αi]ϕ, 〈αi〉ϕ ∈ L
7) ϕ ∈ L implica ϕ? ∈ LAct
8) α, β ∈ LAct implica α;β , α+ β, α∗ ∈ LAct
Note que o operador ; significa composição sequencial,

o operador + representa uma escolha não-determinı́stica e o
operador * é usado para uma representação finita arbitrária. A
construção desta linguagem está baseada em [18].

A interpretação para os operadores Oi,Pi, gi,Ki, [αi] e
〈αi〉 é dada da seguinte maneira:

• Oiϕ: em todas as alternativas possı́veis de funciona-
mento correto do agente i, ϕ é o caso.

• Piϕ: em alguns dos estados nos quais o agente i opera
corretamente ϕ ocorre.

• gi: o agente i está em um estado local de funciona-
mento correto de acordo com seu protocolo.

• Kiϕ: o agente i conhece ϕ.

• [αi] ϕ: após a ação α ser executada pelo agente i,
necessariamente se obtém ϕ.

• 〈αi〉ϕ: após a ação α ser executada pelo agente i,
possivelmente se obtenha ϕ.

Para verificar a satisfação deste sistema deôntico interpre-
tado de estados globais deve-se provar que:

M |=g ϕ,

para todo ϕ ∈ L.
Desta forma, tem-se que:

1) M |=g true
2) M |=g p se g ∈ π(p)
3) M |=g ¬ϕ se ¬ M |=g ϕ
4) M |=g ϕ ∧ ψ se (M |=g ϕ) e (M |=g ψ)
5) M |=g ϕ ∨ ψ se (M |=g ϕ) ou (M |=g ψ)
6) M |=g ϕ→ ψ se (não M |=g ϕ) ou (M |=g ψ)
7) M |=g ϕ ↔ ψ se (M |=g ϕ implica M |=g ψ) e

(M |=g ψ implica M |=g ϕ)
8) M |=g Oiϕ se, ∀g′, temos que gROi g

′ implica
M |=g′ ϕ

9) M |=g Piϕ se, ∃g′, tal que gROi g
′ implica M |=g′ ϕ

10) M |=g gi, se g ∈ ROi (g) (i ∈ A)
11) M |=g Kiϕ, se para todo g′ temos que gRKi g

′

implica M |=g′ ϕ
12) M |=g [αi]ϕ, se ∀g′ temos que gRαi g

′ implica
M |=g′ ϕ

13) M |=g 〈αi〉ϕ, se ∃g′ tal que gRαi g
′ implica M |=g′ ϕ

14) M |=g [αi;βj]ϕ, se ∀g′, g′′ temos que gRαi g
′ e

g′Rβj g
′′ implica M |=g′′ ϕ

15) M |=g [αi + βj]ϕ, se ∀g′ temos que gRαi g
′ implica

M |=g′ ϕ ou gRβj g
′ implica M |=g′ ϕ

16) M |=g [α∗i]ϕ, se ∀g′ temos que gRαi g
′ implica

M |=g′ [α∗i]ϕ
17) M |=g 〈αi;βj〉ϕ, se ∃g′, g′′ tal que gRαi g

′ e g′Rβj g
′′

implica M |=g′′ ϕ
18) M |=g 〈αi + βj〉ϕ, se ∃g′ tal que gRαi g

′ implica
M |=g′ ϕ ou gRβj g

′ implica M |=g′ ϕ
19) M |=g 〈α∗i 〉ϕ, se ∃g′ tal que gRαi g

′ implica M |=g′

[α∗i]ϕ

A fim de ilustrar esta formalização em um sistema multia-
gente é utilizado o Modelo de Segregação. Na Seção IV, este
modelo é especificado como um sistema deôntico interpretado
e algumas propriedades são formalizadas e verificadas.

IV. EXEMPLO: O MODELO DE SEGREGAÇÃO

O modelo de Segregação, inspirado nos artigos de Thomas
Schelling sobre sistemas sociais [9] e disponı́vel na ferramenta
de simulação NetLogo [10], apresenta dois tipos de agentes
(representados na simulação por tartarugas verdes e vermelhas)
que convivem em um determinado ambiente. Cada um deles
quer ter certeza de que vive próximo de algum outro do mesmo

Extending deontic interpreted systems with action logic

31

tipo (mesma cor). A simulação mostra o que acontece em uma
população com estas caracterı́sticas [11].

Este modelo pode ser formalizado como um sistema
deôntico interpretado. Para isto deve-se fazer escolhas a re-
speito de como modelar os estados locais de cada agente e do
ambiente. Aqui optou-se pelas seguintes alternativas (observa-
se que as cores das tartarugas, definidas no modelo como
verdes e vermelhas, foram alteradas para evitar a confusão com
os estados verdes (desejáveis) e vermelhos (indesejáveis)):

• O estado local de cada agente é representado por uma
tupla (i,p,c,sn,on,sw), onde i indica o ı́ndice
do agente, p indica a posição representada pelo par
(linha,coluna), c a cor da tartaruga: branca (W) ou
laranja (O), sn (similar nearby) indica o número de
vizinhos de mesma cor, on (other nearby), indica o
número de vizinhos de cor diferente e sw (similar
wanted) o percentual de similaridade desejado para o
agente.

• O estado local do ambiente é representado pela tupla
(tp,ta,OP,FP), onde tp (total positions) indica o
número de posições existentes no ambiente, ta (total
agents), indica o número de agentes da simulação, OP
o conjunto de posições ocupadas e FP o conjunto de
posições livres.

O conjunto de proposições atômicas que podem ser obser-
vadas neste exemplo é representado por:

P = {positioni(x,y), happyi, alonei, occupied(x,y) }
O conjunto de ações que os agentes podem realizar em

cada estado é representado por:

Act = {ε, movei(x,y) },
onde ε representa a falta de movimentação do agente,

ou seja, ele permanece na mesma posição, e movei(x,y),
representa a movimentação do agente i para a posição (x,y)
no ambiente.

Um estado correto para o agente i (gi) é aquele em que o
agente está feliz (i.e. com o percentual de vizinhos da mesma
cor de acordo com o desejado) e sozinho na posição que ocupa.

O comportamento correto de um agente nesta simulação
segue o seguinte protocolo:

enquanto ¬(happy)i : movei(x, y)

Isto significa que os agentes que ainda não estão em uma
posição com o percentual desejado de vizinhos da mesma
cor, devem saltar para outra posição aleatória até que fiquem
“felizes”. Uma alternativa de funcionamento correto, neste
caso, é aquela em que, partindo do estado inicial, após alguns
saltos, o agente chega a um estado correto (verde).

Considere o exemplo mostrado na Tabela I, onde o ambi-
ente possui 9 posições e 4 agentes. Cada agente está represen-
tado pela sua cor (W-white ou O-orange) e um ı́ndice que o
identifica.

Neste contexto, o estado Global Inicial do Sistema (Le ×
Li × ...× Ln) é descrito como:

TABLE I. EXEMPLO DE SEGREGAÇÃO

W1 W2

O3

O4

g0 = ((9,4, {(1,1),(1,2),(2,2),(3,1)}, {(1,3),(2,1),(2,3),(3,2),
(3,3)}), (1,(1,1),W,1,1,50), (2,(1,2),W,1,1,50), (3,(2,2),O,1,2,
50), (4,(3,1),O,1,0,50)).

Os possı́veis estados locais de cada agente i podem ser
divididos em estados desejáveis - verdes (Gi) e não desejáveis
- vermelhos (Ri) e são representados como:

Gi = {(i, (x, y), sn, on, 50) onde x e y ∈ {1..3}}, sn e
on ≤ 3, para i = 1..4

Ri = {(i, (x, y), sn, on, 50) onde x e y ∈ {1..3}}, sn e
on ≤ 3, para i = 1..4

Uma possı́vel configuração final do ambiente pode ser vista
na Tabela II, cujo estado global seria representado por:

gn = ((9,4, {(1,1),(1,2),(3,1),(3,2)}, {(1,3),(2,1),(2,2),(2,3),
(3,3)}), (1,(1,1),W,1,1,50), (2,(1,2),W,1,1,50), (3,(3,2),O,0,1,
50), (4,(3,1),O,1,0,50))

onde pode-se observar que nos estados locais de todos os
agentes o número de vizinhos de mesma cor é maior ou igual
ao número de vizinhos de cor diferente, ou seja, todos estão
felizes e, assim, não precisam deslocar-se para outro ponto.

TABLE II. EXEMPLO DE SEGREGAÇÃO

W1 W2

O4 O3

Para exemplificar este sistema deôntico, observe a Figura
1.

Fig. 1. Frame gerado a partir do sistema deôntico global.

Nesta figura o ambiente não é considerado e os estados
locais para os agentes estão identificados dentro de cada estado
global g1, ..., g6.

Barbosa and Rocha Costa

32

A Figura apresenta um subconjunto de SD que apresenta
configurações para os agentes 1, 2, 3 e 4, respectivamente. Os
links rotulados indicam as relações Rαi (para i ∈ {1, 2, 3, 4}),
onde os rótulos indicam as ações executadas. Neste exemplo
as ações de movimentação são apenas para o agente 3, visto
que ele é o único que precisa mudar de posição para chegar a
um estado final correto.

As setas tracejadas representam as relações de conhec-
imento RKi (para i ∈ {1, 2, 3, 4}). Na figura, não estão
representados os conhecimentos de cada agente, porém cabe
salientar que em cada um dos estados globais, este refere-se
a fatos como sua posição, cor, felicidade e se o agente está
sozinho nesta posição. Por exemplo, considerando-se o agente
1 no estado global g1 pode-se afirmar que ele conhece os fatos
position1(1, 1), color1(W), happy1 e alone1.

A relação ROi não está explı́cita na figura, porém pode
ser explicada observando-se os estados locais dos agentes. Os
agentes 1, 2 e 4 já estão em estados corretos em todos os
estados globais analisados (g1, ..., g6), portanto os estados g′
alcançáveis para os agentes 1, 2 e 4, a partir de g ∈ {g1, ..., g6},
são eles mesmos (e.g. g1ROi g1, para i ∈ 1, 2, 4). O agente
3 não está em estado correto nos estados g1, g2, g3 e g4,
representado em negrito na figura. Por exemplo, no estado
g1 (configuração inicial do sistema apresentada na Tabela I,
o agente 3 tem dois vizinhos W e apenas um vizinho O).
Este agente somente vai obter um estado correto quando, após
alguns movimentos, chegar a um dos estados g5 ou g6 (e.g
g1R

O
3 g5).

A. Propriedades

Com base no sistema deôntico especificado, é possı́vel
verificar algumas propriedades, tais como:

1) M |=g1 O1 happy1: em todas as alternativas de fun-
cionamento correto do agente 1, partindo do estado
g1, ele está feliz.

M |=g1 O1 happy1
|

M |=g1 happy1
|

g1 ∈ π(happy1)
g1 ∈ {g1, g2, g3, g4, g5, g6} X

2) M |=g1 O1(g1 → happy1 ∧ alone1): em todas as
alternativas de funcionamento correto do agente 1,
partindo do estado g1, se ele está em um estado verde,
então ele está feliz e sozinho.

M |=g1 O1(g1 → happy1 ∧ alone1)
|

M |=g1 (g1 → happy1 ∧ alone1)
|

¬M |=g1 g1 ∨ M |=g1 (happy1 ∧ alone1)
|

g1 ∈ π(happy1 ∧ alone1)
g1 ∈ {g1, g2, g3, g4, g5, g6} X

3) M |=g1 K1(position1(1, 1)): o agente 1, no estado
g1, sabe que está na posição (1,1).

M |=g1 K1(position1(1, 1))
|

M |=g1 (position1(1, 1))
|

g1 ∈ π(position(1, 1))
g1 ∈ {g1, g2, g3, g4, g5, g6} X

V. CONCLUSÃO

Este artigo apresentou uma extensão à abordagem de sis-
temas deônticos interpretados para a especificação de sistemas
multiagentes, incluindo operadores relacionados às ações ex-
ecutadas pelos agentes. A ideia é que se possa utilizá-la para
especificar organizações de sistemas multiagentes onde exis-
tem regras que regem o comportamento dos seus elementos.

Outros aspectos ainda necessitam ser desenvolvidos como,
por exemplo, um método de cálculo para a validação de
propriedades. Estão sendo desenvolvidas, pelos autores, regras
para um sistema de tableaux que envolvam estes novos op-
eradores de forma que se possa demonstrar a prova destas
propriedades. Pretende-se aplicar estas definições em outros
exemplos mais complexos e com aspectos organizacionais
bem definidos e verificar a possibilidade de inclusão destes
operadores em uma linguagem de especificação formal.

AGRADECIMENTOS

O trabalho conta com apoio financeiro do CNPq - Edital
PDI, através do Projeto MSPP - Modelagem e Simulação
de Polı́ticas Públicas. Raquel de Miranda Barbosa é bolsista
PosDoc/CAPES junto ao PPGMC/FURG.

Tı́tulo em Português: Estendendo sistemas deônticos in-
terpretados com lógica de ações.

REFERENCES

[1] F. Dignum, “Autonomous agents with norms,” Artificial Intelligence and
Law, vol. 7, pp. 69–79, 1999.

[2] G. Boella and L. V. D. Torre, “Introduction to normative multiagent sys-
tems,” Computational and Mathematical Organization Theory, vol. 12,
pp. 71–79, 2006.

[3] G. H. von Wright, “Deontic logic,” in Mind. Oxford University Press,
1951, vol. 60, no. 237, pp. 1–15.

[4] J. Y. Halpern, “Using reasoning about knowledge to analyze distributed
systems,” Annual Review of Computer Science, vol. 2, no. 1, pp.
37–68, 1987. [Online]. Available: http://www.annualreviews.org/doi/
abs/10.1146/annurev.cs.02.060187.000345

[5] J. Hintikka, Knowledge and Belief. Ithaca: Cornell Univ., 1962.
[6] J. Y. Halpern, “Reasoning about knowledge: A survey,” in Handbook

of Logic in Artificial Intelligence and Logic Programming. Oxford
University Press, 1995, pp. 1–34.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about
Knowledge. The MIT Press, Cambridge Massachusetts, 1995.

[8] A. Lomuscio and M. Sergot, “On multi-agent systems specification via
deontic logic,” in Proceedings of ATAL 2001. Springer Verlag, 2001.

[9] T. C. Schelling, Micromotives and Macrobehavior. New York: Norton,
1978, see also a recent Atlantic article: Rauch, J. (2002). Seeing Around
Corners; The Atlantic Monthly; April 2002;Volume 289, No. 4; 35-48.
http://www.theatlantic.com/issues/2002/04/rauch.htm.

[10] U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo/,
Evanston,IL, 1999.

[11] ——, “Netlogo segregation model,” http://ccl.northwestern.edu/netlogo/
models/Segregation, Evanston,IL, 1997.

Extending deontic interpreted systems with action logic

33

[12] A. Lomuscio and M. Sergot, “Extending interpreting systems with some
deontic concepts,” in Proceedings of TARK 2001. Morgan Kauffman,
2001, pp. 207–218.

[13] F. Raimondi and A. Lomuscio, “Automatic verification of deontic
interpreted systems by model checking via obdd’s,” 2004.

[14] B. Wozna, A. Lomuscio, W. Penczek, and W. Penczek, “Bounded model
checking for deontic interpreted systems,” in Proc. of the 2nd Workshop
on Logic and Communication in Multi-Agent Systems (LCMAS 04).
Elsevier, 2004, pp. 93–114.

[15] G. Governatori, A. Lomuscio, and M. J. Sergot, “A tableux system
for deontic interpreted systems,” in AI 2003: Advances in Artificial
Intelligence, ser. Lecture Notes in Computer Science, T. Gedeon and
L. Fung, Eds., vol. 2903. Berlin, Springer, 2003, pp. 339–350.

[16] R. M. Barbosa, “Especificação formal de organizações de sistemas
multiagentes.” Ph.D. dissertation, Universidade Federal do Rio Grande
do Sul (UFRGS), Porto Alegre, RS, 2011.

[17] A. Lomuscio and M. Sergot, “Deontic interpreted systems,” Studia
Logica, vol. 75, no. 1, pp. 63–92, 2003. [Online]. Available:
http://dx.doi.org/10.1023/A%3A1026176900459

[18] J.-J. Meyer, “Dynamic logic reasoning about actions and agents,” in
LogicBased Artificial Intelligence. Kluwer Academic Publishers, 2000,
pp. 281–311.

Barbosa and Rocha Costa

34

Application of Workflow in Multi-Agent

System Organization

José R. F. Neri, Jomi F. Hübner

Departamento de Automação e Sistemas (DAS)

Universidade Federal de Santa Catarina (UFSC)

Florianópolis, SC, Brasil

jrf.neri@gmail.com, jomi@das.ufsc.br

Carlos H. F. Santos

Grupo de Pesquisa em Robótica (GPR)

Universidade Estadual do Oeste do Paraná (UNIOESTE)

Foz do Iguaçu, PR, Brasil

cfh.santos@uol.com.br

Abstract— This paper presents a proposal for a model to

integrate a workflow system into a multi-agent organizational

model. Three alternatives are evaluated and the best alternative

is integrated into the Moise organizational framework. An

example of the chosen model is shown and a comparison based on

workflow patterns is presented. The advantages of using this

model are also discussed.

 Keywords—workflow; agents; organization

I. INTRODUÇÃO

De modo geral, uma organização é composta por grupos de

agentes que se relacionam entre si a fim de alcançarem

objetivos comuns. Estrutura organizacional é frequentemente

vista como um meio de gerenciar dinâmicas complexas em

sociedades. Isto implica que abordagens para modelagens

organizacionais devem incorporar ambos os aspectos

estruturais e dinâmicos de tais sociedades [5], [6]. As

características que tornam o estudo das organizações um

desafio bastante pesquisado é que elas são sistemas complexos,

dinâmicos e adaptativos que evoluem [9].

Em [2] os autores citam quatro dimensões que são utiliza-

das na maioria dos modelos organizacionais. Estas dimensões

são: Estrutural: A dimensão estrutural está ligada à

especificação de papéis, grupos e relacionamentos entre estes,

que podem ou não ser definidos a partir de objetivos organiza-

cionais; Dialógica: A modelagem dialógica caracteriza-se pela

especificação de estruturas de interação direta entre papéis por

troca de mensagens tendo em vista a realização de objetivos

organizacionais, diálogos, cenas e protocolos; Funcional: A

dimensão funcional caracteriza-se pela especificação e decom-

posição de metas e a relação entre essas metas; Normativa: Na

dimensão normativa são definidas as normas que

interrelacionam e regulamentam elementos funcionais,

estruturais e dialógicos.

Desta forma, a especificação funcional de alguns dos

modelos organizacionais como o Moise [7], [8], TEAM [3],

STEAM [10], [11] e Opera [4], [5] é formada a partir da

decomposição de um objetivo em uma estrutura de árvore,

onde a raiz é a meta global e as folhas são as metas locais.

Essa estrutura utilizada por esses modelos possuem algumas

limitações, tais como:

 Não permite que haja um encadeamento condicional:
utilizado para modelar uma escolha entre duas ou mais
alternativas, por exemplo: if e then da lógica de
programação;

 Não permite que haja um encadeamento iterativo:
algumas vezes é necessário executar a mesma tarefa, ou
o mesmo grupo de tarefas, múltiplas vezes até que uma
dada condição seja alcançada;

 Não possui tratamento de exceção: onde podem ser
previstas as situações excepcionais que acontecem
durante a execução de uma tarefa.

Considerando-se essas limitações apresentadas por alguns

dos modelos organizacionais existentes, o que se propõe neste

trabalho é a utilização de um modelo conceitual para

integração de um sistema de workflow com um modelo

organizacional de sistemas multiagentes. Isto tem o objetivo de

utilizar o workflow para controlar o fluxo das metas da

dimensão funcional de uma organização, tratando as limitações

apresentadas acima e adicionando outras propriedades

importantes que sistemas de workflow podem oferecer.

Sistemas de workflow são uma tecnologia capaz de

coordenar e sincronizar a maneira com que as atividades de

uma organização são executadas para a realização de uma

determinada tarefa. Workflow é definido pela WfMC

(Workflow Management Coalition) como “a automação total

ou parcial de um processo de negócio, durante a qual

documentos, informações e tarefas são passadas entre os

participantes do processo” [13].

Segundo a WfMC, um processo é "um conjunto

coordenado de tarefas (sequenciais ou paralelas) que são

interligadas com o objetivo de alcançar um meta comum",

sendo tarefa conceituada como "uma descrição de um

fragmento de trabalho que contribui para o cumprimento de um

processo" [13].

Este documento está dividido em sete seções. Na segunda

seção, comenta-se sobre o modelo organizacional utilizado

neste trabalho, o Moise. Na terceira seção são apresentadas três

propostas e realizado um comparativo entre elas. Na quarta

seção, descreve-se o modelo conceitual escolhido em maiores

detalhes. Em seguida na quinta seção é mostrado um exemplo

completo da utilização do modelo escolhido. Na sexta seção,

Application of Workflow in Multi-Agent System Organization

35

são apresentados os resultados e na sétima seção, apresentam-

se as conclusões e algumas ideias que podem servir como

direções para pesquisas futuras.

II. MOISE

Dentre os vários modelos organizacionais existentes, neste

projeto iremos focar no modelo Moise [8], [9], que é um

modelo organizacional para projeto de sistemas multiagentes

baseado em noções como papéis, grupos e missões. Para o

Moise, a organização é vista como um meio para reduzir a

complexidade do problema a ser resolvido, através do

esclarecimento e da divisão de tarefas entre os agentes e da

definição de relações entre eles. Moise define uma

especificação explícita da organização utilizada pelos agentes

para raciocinar sobre a organização e também utilizada como

uma plataforma que impõe aos agentes uma especificação a ser

seguida.

No Moise, a organização possui três dimensões: a estrutura

(papéis), o funcionamento (planos globais) e as normas

(obrigações). No aspecto estrutural, o Moise define como os

papéis estão relacionados a outros elementos da organização,

inclusive a outros papéis.

A especificação funcional do Moise, foco deste trabalho, é

formada a partir da especificação de esquemas sociais que são

compostos de planos e missões que visam atingir uma meta

global. Uma meta global representa um estado do mundo

desejado pela organização, enquanto uma meta local é um

objetivo de um único agente. Planos determinam a

coordenação da realização das metas. Uma missão é um

conjunto de metas locais que pode ser atribuído a um agente

através de seus papéis, sendo que este agente é responsável

pela satisfação de todas as metas da missão.

O aspecto normativo liga os aspectos funcionais e aspectos

estruturais, indicando quais as responsabilidades dos agentes

nos planos globais.

III. PROPOSTA DE SOLUÇÃO

Esta seção apresenta três propostas de soluções para integrar

sistemas de workflow a um modelo organizacional. É feito um

comparativo entre os modelos propostos e explicado com

maiores detalhes o modelo conceitual escolhido. As três

propostas apresentadas abaixo são: modelo híbrido, modelo

workflow com missões e modelo workflow.

A. Modelo Híbrido

O modelo híbrido é composto por esquemas sociais, planos,

metas, missões e um sistema de workflow. Essa proposta foi

concebida com o intuito de utilizar tudo que existe atualmente

no Moise, nada do Moise é excluído.

As modificações para esse modelo consistem na adição de

um novo tipo de meta que não utiliza os planos fornecidos pelo

esquema social do Moise, passando a utilizar o controle de

fluxo fornecido por um sistema de worfklow. Metas com fluxo

controlado pelo motor de workflow passam a se chamar

tarefas, para ficar de acordo com os conceitos de workflows.

Para cada meta global do tipo workflow existe um motor de

workflow para controlar o fluxo das tarefas executadas pelos

agentes, funcionando de forma semelhante a um processo. A

meta tipo workflow torna-se satisfeita quando todas as tarefas

do processo estão satisfeitas e as tarefas do processo são

alocadas de acordo com as missões dos agentes.

Por exemplo, na figura 1 as metas globais Destruir Inimigo e

Defesa possuem um plano paralelo, a meta global Ataque,

possui plano sequencial e podem ser cumpridas sem uma

ordem pré-determinada, as metas Ataque e Defesa são usuais

do Moise, entretanto a meta Captar Recurso é do tipo

workflow, esse tipo de meta controla o fluxo das tarefas com

um motor de workflow.

Figura 1: Modelo Híbrido.

B. Modelo Workflow com Missões

O modelo workflow com missões é composto por um
sistema workflow e missões do Moise, os esquemas sociais são
substituídos por processos. Os papéis dos agentes continuam
possuindo obrigações com missões, o que significa que os
agentes devem se comprometer com as tarefas do workflow
que estão associadas às suas missões. As missões ainda
permanecem com o intuito de não precisar alterar a dimensão
normativa do Moise. Não existem mais planos, o fluxo das
tarefas é controlado apenas pelo sistema de workflow.

Na figura 2 é possível observar que cada tarefa possui uma
missão associada. O agente que se compromete com a missão
m1 deve cumprir as tarefas task1 e task3, e o agente que se
compromete com a missão m2 deve cumprir as tarefas task2 e
task4.

Figura 2: Modelo Workflow com Missões.

C. Modelo Workflow

O modelo workflow é muito semelhante ao modelo

workflow com missões, a diferença está no fato do modelo de

workflow não utilizar mais missões, um agente se compromete

Neri, Santos and Hubner

36

com uma tarefa de acordo com o seu papel no grupo, não existe

mais a necessidade de assumir uma missão para só então

assumir as tarefas dessa missão. Nesse caso a dimensão

normativa no Moise precisa ser alterada. Por exemplo, no lugar

de determinar obrigações para com missões, irá determinar

obrigações para tarefas.

Esse modelo foi concebido pensando em ser o mais parecido

possível com a teoria de workflows. Uma pessoa que já

trabalha com sistemas de workflows não precisa aprender

novos conceitos para começar a utilizá-lo.

D. Comparativo entre os modelos

Foi realizado um comparativo entre as vantagens e

desvantagens apresentadas pelos três modelos propostos (tabela

1). Os contextos escolhidos para essa avalição foram: usuários

Moise, usuários workflow, aplicações antigas, desempenho,

encadeamento iterativo e dimensão normativa. Cada item

possui uma pontuação de acordo com o seu modelo, a

pontuação vai de + a +++, sendo que + atende muito pouco ao

item e +++ atende totalmente. A seguir são detalhados cada

item do comparativo.

TABELA 1: QUADRO COMPARATIVO DAS VANTAGENS E DESVANTAGENS

APRESENTADAS PELOS TRÊS MODELOS.

Contextos Híbrido Workflow

c/ Missões

Workflow

1 - Usuários Moise ++ + +

2 - Usuários Workflow + ++ +++

3 - Novos usuários + ++ +++

4 - Desempenho + +++ +++

5 - Encadeamento iterativo + + +++

6 - Dimensão normativa +++ +++ +

1. Usuários Moise. Diz respeito a usuários antigos que já

utilizam o Moise, o modelo híbrido ganhou a maior nota

nesse item, pois possui a vantagem de utilizar tudo que

existe atualmente na dimensão funcional do Moise. Um

usuário habituado ao Moise, não precisa aprender todos os

conceitos de workflow, podendo se adaptar aos poucos,

pois esses conceitos somente serão utilizados quando a

meta é do tipo workflow.

2. Usuários workflow. Usuários de um sistema workflow

teriam maiores dificuldades para se adaptarem ao modelo

híbrido, pois precisariam aprender conceitos de esquema

social. O modelo workflow com missões ganhou uma nota

inferior ao modelo workflow por utilizar missões, o que

poderia confundir usuários de worflow.

3. Novos usuários. São usuários que nunca utilizaram o

Moise e não possuem conhecimento sobre sistemas de

workflow. O modelo híbrido leva desvantagem nesse

quesito em relação aos demais, pois usuários levariam

mais tempo aprendendo conceitos (tanto de workflows

quanto do Moise) para utilizar todos os recursos do

modelo hibrido.

4. Desempenho. Em relação ao desempenho o modelo

híbrido ganhou a menor nota nesse quesito por possuir a

necessidade de utilizar varias instâncias do motor de

workflow, uma para cada meta do tipo workflow,

causando problemas de desempenho e escalabilidade. Nos

modelos workflow com missões e workflow é necessário

apenas um motor de workflow para a dimensão funcional

do Moise.

5. Encadeamento iterativo. O modelo híbrido e workflow

com missões possuem dificuldades de implementação de

um encadeamento iterativo, onde uma determinada meta

ou um grupo de metas podem ser alcançados várias vezes.

Isso ocorre por causa do uso de missões, pois quando um

agente cumpre todas as metas de sua missão, ele deixa a

missão, não se comprometendo mais com as metas dessa

missão. Entretanto caso o agente precise cumprir

novamente uma meta dessa missão, isso não será possível,

pois ele já abandonou a missão. O modelo workflow

resolve esse problema de implementação, onde as tarefas

são assumidas diretamente pelos agentes e o agente nunca

deixa uma tarefa.

6. Dimensão normativa. Como o modelo workflow não

utiliza missões, a dimensão normativa precisa ser

reimplementada no modelo. O modelo híbrido e workflow

com missões utilizam missões, não necessitando

modificações na dimensão normativa.

Foi escolhido o modelo workflow para utilização nesse

trabalho, porque ele conseguiu oferecer maiores vantagens em

relação aos outros modelos apresentados. Pela tabela 1 é

possível observar que o modelo workflow conseguiu pontuação

máxima em quatro dos seis itens, enquanto o modelo workflow

e modelo híbrido conseguiram apenas duas e uma pontuação

máxima respectivamente. Os quesitos considerados mais

importantes e que definiram essa escolha foram: usuários

novos e encadeamento iterativo. Encadeamento iterativo por

facilitar a próxima etapa desse projeto que é o desenvolvimento

da proposta, e usuários novos, pois como não existem muitas

aplicações com o Moise atual, não existe necessidade de focar

num modelo para usuários Moise.

IV. AGREGAÇÃO DO WORKFLOW AO MOISE

Esta seção descreve o modelo conceitual escolhido para

incorporação de um sistema de workflow ao modelo

organizacional Moise. O modelo em uma visão geral é dividido

em três componentes: a organização, o ambiente e os agentes.

O componente organização engloba o motor de workflow e

o estado organizacional. O estado organizacional é um

elemento importante na integração de um sistema de workflow

ao Moise, nele estão contidos a especificação organizacional, a

entidade organizacional, os fatos, regras e normas que os

agentes têm obrigação ou permissão de se comprometerem. O

estado organizacional informa ao motor de workflow quando

uma tarefa foi reativada e avisa das possíveis exceções geradas

por uma tarefa, três tipos de exceções são possíveis: exceção de

tempo, exceção de recursos e exceção de remoção. Uma

exceção de tempo ocorre quando o tempo determinado para

executar uma tarefa foi ultrapassado, uma exceção de recursos

acontece quando não há recursos suficientes para a execução

de uma tarefa e uma exceção de remoção ocorre quando uma

tarefa é removida por um agente.

Application of Workflow in Multi-Agent System Organization

37

O ambiente segue a proposta de Agents & Artifacts [12], onde

o ambiente é formado por vários artefatos, um artefato pode ser

qualquer objeto do ambiente, como por exemplo, os recursos

necessários para a execução de uma tarefa. O ambiente informa

ao sistema de workflow quando uma tarefa foi executada por

um agente e informa ao estado organizacional os recursos

disponíveis atualmente no ambiente.

Os agentes atuam sobre o ambiente e sobre a organização,

são responsáveis por cumprir as obrigações designadas pela

organização, tais como: participar de um determinado grupo,

assumir um papel na organização ou executar uma tarefa. Um

agente pode receber e dar ordem para outros agentes, pode

monitorar o fluxo das tarefas através de métricas de processo

fornecidas pelo workflow ou pelo estado organizacional, pode

pensar sobre processos, verificar gargalos, atrasos, delegar

tarefas, criar novas tarefas e cancelar ou remover tarefas. Caso

uma tarefa não possua nenhum papel associado na organização,

ela pode ser executada por um agente externo ou por um

humano.

A figura 3 apresenta o modelo conceitual de forma

detalhada. O componente motor de workflow é constituído por

processos e pelo estado das tarefas. Em um processo, existe um

conjunto de tarefas interligadas de forma sequencial ou

paralela, visando alcançar um objetivo comum da organização.

O estado das tarefas armazena as exceções geradas pelo estado

organizacional, receber as tarefas executadas pelos agentes e

informar aos processos e ao estado organizacional as mudanças

nos estados das tarefas.

Figura 3: Modelo Conceitual.

Os estados possíveis de uma tarefa (figura 4) são: inativa,

ativa, satisfeita, cancelada ou removida. Todas as tarefas de

um processo iniciam-se no estado inativa, caso os pré-

requisitos para tonar uma tarefa habilitada sejam atingidos, a

tarefa se torna ativa e pronta para ser executada. O fluxo do

processo é interrompido até que uma tarefa ativa seja cancelada

ou satisfeita. Para uma tarefa torna-se satisfeita sua

cardinalidade precisa ser alcançada, ou seja, número de vezes

que a tarefa precisa ser executada para se tornar satisfeita.

Uma tarefa ativa é cancelada, caso ocorram uma exceção de

recurso ou uma exceção de tempo, caso uma exceção de

recurso aconteça, o fluxo do processo pode tomar um caminho

alternativo, onde tarefas para captação de recursos serão

ativadas, uma vez que os recursos necessários para a execução

da tarefa foram captados, a tarefa que causou a exceção será

reativada, tornando-se ativa novamente. Uma tarefa cancelada

por exceção de tempo fica cancelada por prazo indeterminado

até que um agente de monitoração decida reativar a tarefa.

Uma tarefa satisfeita pode ser ativada novamente, caso os

seus pré-requisitos de habilitação sejam atingidos. Se uma

exceção de remoção acontecer, a tarefa é excluída do processo

e ao contrário de uma tarefa cancelada uma tarefa removida

não pode mais se tornar ativa. Quando o processo termina

todas as tarefas são finalizadas.

Figura 4: Estados possíveis de uma tarefa.

Através das obrigações geradas pelo estado organizacional é

que um agente fica ciente do momento que deve executar suas

tarefas. Uma vez que a tarefa é executada a obrigação do

agente é cumprida. O modelo proposto não utiliza planos, o

fluxo de tarefas é controlado por um motor de workflow,

permitindo trabalhar com fluxos complexos, não possívei na

versão do Moise sem a integração.

V. ESTUDO DE CASO

Esta seção apresenta um exemplo completo da utilização do

modelo escolhido e mostra um comparativo entre a dimensão

funcional com e sem agregação de um sistema de workflow.

Conforme pode ser visto na figura 5, na especificação

estrutural foi definido o grupo laticínio composto pelos papéis

fazendeiro, entregador e operário. Os papéis fazendeiro e

operário possuem cardinalidade de 1 a 5, ou seja, no mínimo 1

e no máximo 5 agentes podem assumir esses papéis. O papel

entregar possui cardinalidade de 1 a 3 e fazendeiro e o papel

operário possui autoridade sobre o papel entregador.

Neri, Santos and Hubner

38

Figura 5: Dimensão Estrtural.

A figura 6 apresenta um processo definindo a especificação

funcional de fabricação de queijo. Um laticínio precisa

entregar uma encomenda de 1000 peças de queijo para um

supermercado. Para cumprir esse objetivo são utilizados três

papéis como descrito na especificação estrutural: o papel

fazendeiro, o papel entregador e o papel operário.

As tarefas são assumidas pelos agentes no momento em que

estes assumem um papel no grupo laticínio. Conforme

especificado na tabela 2, o agente que assume o papel de

fazendeiro é responsável por tirar o leite das vacas, o

entregador é encarregado de levar o leite ao laticínio e entregar

a encomenda de 1000 peças de queijos ao supermercado e o

agente operário é encarregado de fabricar o queijo.

O fluxo do processo inicia-se com a tarefa ordenhar leite da

vaca, em seguida o leite é entregue ao laticínio para que

produção do queijo possa ser iniciada. O queijo é produzido até

o leite acabar ou até que a meta de 1000 peças de queijos seja

alcançada. Caso o leite termine o fluxo do processo é

reiniciado, voltando para a tarefa de tirar o leite da vaca.

Esse fluxo de processo não seria possível na dimensão

funcional do Moise sem integração do workflow, pois os

planos do Moise não suportam encadeamento condicional e

nem o encadeamento iterativo. Sem encadeamento iterativo,

uma meta satisfeita não ficaria mais ativa para ser satisfeita

novamente. Sem encadeamento condicional, o fluxo do

processo não conseguiria decidir qual caminho seguir depois da

tarefa fazer queijo se tornar satisfeita, ele ativaria as tarefas

entregar encomenda, tirar leite da vaca e fazer queijo.

Figura 6: Dimensão Funcional.

A relação entre a especificação estrutural e a especificação

funcional é feita pela especificação normativa. Na

especificação normativa são descritas as tarefas com as quais

um papel tem permissão ou obrigação de se comprometer.

TABELA 2 : DIMENSÃO NORMATIVA.

PAPEL RELAÇÃO DEÔNTICA TAREFA

FAZENDEIRO OBRIGAÇÃO TIRAR LEITE DA VACA

ENTREGADOR OBRIGAÇÃO ENTREGAR LEITE NO LATICINIO,
ENTREGADOR ENCOMENDA

OPERÁRIO OBRIGAÇÃO FAZER O QUEIJO

VI. RESULTADOS E DISCUSSÕES

A. Comparativo entre os modelos

Padrões de workflow têm atraído a atenção de pesquisadores

e da indústria de software devido as suas potenciais vantagens.

Em [1] são descritos 21 padrões de workflow para controle de

fluxo (e.g., sequencial, paralelo, condicional). Tais padrões são

úteis tanto para a definição de workflows, como para validar o

poder de expressão das linguagens e ferramentas de workflow.

Os padrões descrevem diversas maneiras, através das quais,

dados podem ser representados em definições de workflow.

A tabela a seguir sumariza os resultados da pesquisa em

termos de suporte aos padrões de workflow propostos. Para

cada combinação, é indicado se o modelo suporta ou não o

padrão. Como convenção, atribui-se “suportado” para padrões

suportados direta e/ou indiretamente pela ferramenta, e “não

suportado” para padrões não suportados pela ferramenta.

TABELA 3 : PADRÕES DE FLUXOS.

Padrão Moise Moise + Workflow

1 (Sequence) Suportado Suportado

2 (Parallel Split) Suportado Suportado

3 Synchronization Suportado Suportado

4 (Exclusive Choice Suportado Suportado

5 Simple Merge Suportado Suportado

6 Multi-choice Suportado Suportado

7 Synchronizing Merge Não suportado Suportado

8 Multi-merge Não suportado Não suportado

9 Discriminator Não suportado Não suportado

10 Arbitrary Cycles Não suportado Suportado

11 Implicit Termination Não suportado Não suportado

12 MI Without Synchronization Não suportado Suportado

13 MI With a Priori Design Time

Knowledge

Não suportado Suportado

Application of Workflow in Multi-Agent System Organization

39

Pela tabela 3 é possível notar que o Moise com a agregação

do workflow suporta 10 dos 13 padrões apresentados.

Enquanto que o Moise sem a integração suporta apenas 6 dos

13 padrões. Com suporte ao padrão Arbitrary Cycles uma ou

mais tarefas podem repetir ciclicamente, permitindo ‘loop’.

Isso demonstra vantagem de agregar workflow ao Moise, pois

é possível resolver o problema de encadeamento iterativo e

condicional.

B. Vantagens Encontradas

Abaixo são apresentadas algumas vantagens encontradas na

utilização de workflow em organização de sistemas

multiagentes:

Padrões de Fluxos Prontos: Na dimensão funcional do

Moise sem agregação do workflow, a modelagem dos fluxos é

difícil, pouco intuitiva e não há padrões de fluxos prontos a

serem seguidos como em sistemas de workflow. Algumas

vantagens de utilizar padrões de fluxos prontos são:

 Eles foram provados. Os padrões refletem a
experiência, conhecimento e soluções dos
desenvolvedores que tiveram sucesso usando esses
padrões em seus trabalhos;

 São reusáveis. Os padrões provêm uma solução pronta
que pode ser aplicada a diferentes problemas;

 São expressíveis. Os padrões provêm um vocabulário
comum de soluções que podem expressar muitas
soluções, sucintamente.

Interface gráfica intuitiva: Ao contrário do Moise que não

utiliza uma ferramenta para modelagem dos fluxos de metas da

organização, a maioria das ferramentas de sistemas de

workflow possuem um editor gráfico para modelagem dos

fluxos de tarefas no padrão BPMN (Business Process

Modeling Notation), trata-se de uma notação padrão para o

desenho de fluxogramas em processos de negócios.

Agentes podem raciocinar sobre workflow: Utilizando um

componente BAM (Business Activity Monitoring) um agente

monitora o workflow, verifica gargalos, atrasos, pensa sobre o

processo e cria novos processos em tempo de execução. Caso

um agente se recuse a executar uma tarefa ele pode delegar a

tarefa para outro agente ou mudar o papel do agente, realizando

assim o refinamento e ajuste de processos.

Utilização de um Motor de regras: Um componente BRM

(Business Rules Management) é uma tecnologia que permite

aos usuários finais definirem regras de negócio de forma

declarativa. Regras de negócio ficam em um repositório

separado, e podem ser consultados pelos agentes em tempo de

execução. Isso facilita a institucionalização das regras de

negócio na organização, a transparência sobre as regras

existentes e redução do esforço de manutenção de sistema.

Agentes podem utilizar dos conectores do workflow:
Agentes podem utilizar de um banco de dados, acessar

webservices, enviar e-mail, entre outras possibilidades que

conectores do workflow oferecem.

Tarefas podem ser executadas por humanos ou por

agentes: Alguns fluxos de tarefas podem ser totalmente

automatizados, sendo todas as tarefas executadas por agentes.

Em outros fluxos de tarefas, algumas são executadas por

humanos e outras por agentes, aumentando a interação entre

esses dois.

VII. CONCLUSÃO E TRABALHOS FUTUROS

Este trabalho apresenta uma proposta de agregação de um

sistema de workflow ao modelo organizacional Moise. São

avaliadas três alternativas para o modelo de integração e a

alternativa escolhida foi apresentada com maiores detalhes.

Com o estu- do de caso, foi ilustrado o uso do encadeamento

condicional e iterativo na dimensão funcional do Moise. Isso

foi possível graças a utilização de um motor de workflow no

controle do fluxo das tarefas.

Os próximos passos do trabalho são a avaliação do modelo

através da definição e desenvolvimento da arquitetura de

implementação e a comparação com as outras propostas de

aplicações de sistemas multiagentes que utilizam sistemas de

workflow. Na comparação serão apresentados os componentes

atendidos e não atendidos pelas propostas.

REFERENCIAS

[1] Aalst, W.M.P. van der; Hee, K. van. (2002) “Workflow Management”:

models, methods, and systems. London: The MIT Press.

[2] Coutinho, L. R., Sichman, J. S., Boissier, O. (2006). Organizational
Modeling Dimensions in Multiagent Systems. In: IBERAGENTS,
Ribeirao Preto, SP, Brasil. Anais.

[3] Decker, K.; Lesser, V. Task environment centered design of
organization. In: AAI Spring Symposium on Computational
Organization Design. Menlo Park: AAAI, 1994.

[4] Dignum, V. A model for organization interaction: based on agents,
founded in logic. Tese (doutorado) – Utrecht University, 2004. SIKS
Dissertation Series No. 2004-1.

[5] Dignum, V.; Meyer, J.; Weigand, H,; Dignum, F. An organizational-
oriented model for agent societies. In: (RASTA ’02), at AAMAS,
Bologna, Italy, 16 July 2002.

[6] Ferber, J.; Michel, F.; Báez-Barranco, J. Agre: Integrating environments
with organizations. In: Environments for Multi-Agent Systems. Berlin,
Heidelberg: Springer-Verlag, 2005. (Lecture Notes in Computer
Science, v. 3374), p. 48-56.

[7] Hannoun, M., Boissier, Oliver ans Sichman, J. S., e Sayettat, C. (1999).
Moise: Un modèle organisationnel pour la conception de systèmes
multi-agents. Em Acts des tèmes Journèes Francophones Intelligence
Artificielle Distribuée & Systèmes Multi-Agents. Hermès Science
Publications.

[8] Hübner, J. F. (2003). Um Modelo de Reorganização de Sistemas
Multiagentes. Tese de Doutorado, Escola Politécnica da Universidade de
São Paulo.

[9] Okuyama, F. Y. (2008). Modelo MAS-SOC: Integrando Ambientes e
Organizações para Simulações Baseadas em Sistemas Multiagentes
Situados, Tese. UFRGS-RS.

[10] Tambe, M. Towards flexible teamwork. Journal of Artificial Intelligence
Research, v. 7, p, 83-124, 1997.

[11] Tambe, M,; Adibi, J,; Al-Onaizan, Y,; Erdem, A,; Kaminka, G. A.;
Marsella, S. C.; Muslea, I. Building agente teams using a explicit
teamwork model and learning. Artificial Intelligence, v. 110, p. 215-239,
199.

[12] Omicini, A.; Ricci, A.; Viroli, M. Artifacts in the A&A meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems,
Kluwer Academic Publishers, Hingham, MA, USA, v. 17, p. 432-456,
2008.

[13] WfMC (2008). “Workflow Management Coalition Terminology &
Glossary”, Document Number WFMC-TC-1011, Document Status -
Issue 3.0.

Neri, Santos and Hubner

40

A Normative and Self-Organizing Piloting Model
for Virtual Network Management
Carolina Valadares, Manoel T. Abreu Netto, and Carlos J. P. de Lucena

Department of Informatics
Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brazil
{cvaladares, mnetto, lucena}@inf.puc-rio.br

Abstract—The Internet has become an essential role in the
society, serving every day billions of users spread all over the
world. It is a complex network that holds an extensive range of
services, applications and technologies. Its model, however,
makes it difficult to solve structural problems such as
management and maintaining. Network virtualization has been
proposed to tackle this issue. In this paper, we use the concept of
multi-agent system, norms and self-* properties to propose and
validate an autonomic self-organizing model for virtual network
management. As our proof-of-concept, we show that our system,
which is composed of a virtual network of virtual machines
capable of self-organizing themselves in a totally decentralized
way across a physical infrastructure in order to cope with
environment changes, satisfies its main goal of efficiently re-
organize itself with no central control.

Keywords—multi-agent; selg-organazing; virtual network
management; norms; autonomic network;

I. INTRODUCTION
The Internet is a complex network that servers billions of

users spread all over the world. It caries an extensive range of
services, technologies, applications and has also enabled a
variety of forms of human interactions and information
exchange. Even through its architecture facilitates the
deployment of new applications, due to its transparency, its
model makes it difficult to solve structural problems such as
scalability, management, mobility and security [3]. The
Internet is a large-scale network and a trivial approach for its
management, which involves human being interference,
becomes costly and flawed as its size increases.

Autonomic network virtualization has been pushed forward
by its proponents to tackle the Internet ossification problem. It
represents a new approach that has recently received
substantial attention from academia, whereas it is able to run
multiple virtual networks simultaneously on the top of a single
physical substrate. We intend to deal with the complexity
aggregated to the new concept of virtual network by enabling
the self-management behavior. This self-* capability
represents a specific area of autonomic computing [11], a term
coined by IBM, to deal with such complexity by enabling
systems to self-manage themselves. The main key behind
autonomic network visualization is, therefore, the building of

flexible networks capable of managing themselves in order to
deal with external changes and interferences from the
environment.

Virtual networks can support simultaneous independents
network experiments, services and architectures over a shared
substrate network [7][9]. Each virtual network is capable of
running its own protocols, routing process, services and
management solutions, in a way of totally isolation
and independency, although they share the same
infrastructure. It is composed of a set of physical and virtual
resources, as depicted in Figure 1, in which physical resources
(substrate node) consist of devices such as router, access
points, and are able to embed many virtual nodes. These
virtual nodes are connected together by virtual links, which is
also embedded on physical resources. Both virtual node and
virtual link belong to a dedicated virtual network, that
supports a specific service or protocol [5], in which every
substrate and virtual node has a self-organizing piloting agent
embedded, responsible for handling local decisions and
actions, which characterizes it as a decentralized model.

Figure 1 Virtual Network Model

The piloting agent itself is what leads the virtual network to

emerge a self-organizing and is in charge of handling local
behaviors to enable a proper control and management of the
virtual network, its components, and the network flows, in
order to maintain the efficient use of substrate resources on
network virtualization. It represents the adaptive method
running inside of each substrate and virtual node, which is
responsible for adapting and managing the network resources
in order to meet quality policies and users requirements in
case of environment changes. Moreover, it is composed of
high-level norms and a self-organizing control loop to retrieve

A Normative and Self-Organizing Piloting Model for Virtual Network Management

41

local knowledge to support the decision making on whether to
self-organize the substrate network to cope with changes on
either traffic loads or resources availability.

As our proof-of-concept, we implemented and validated a
piloting system for virtual network management, in which the
piloting system acts upon a network failure by either creating
a new virtual router capable of handling the traffic demand or
migrating an existent virtual router to a distinct host. The
main goal of our research is to offer a scalable and robust way
to evaluate the effectiveness of our piloting system, also its
ability to self-configure its virtual resources on specific
scenarios.

The remainder of this paper is structured as follows. Section
2 summarizes the related work on adaptive provisioning.
Section 3 brings an overview of the concepts applied in this
work. In section 4, we describe the self-organizing piloting
model itself, under the multi-agent system (MAS) perspective.
We evaluate testbed setup and experimental results in section
5. Finally, section 6 concludes this paper and presents on
going and future works.

II. RELATED WORK
The problem of virtual network management can be divided

into two main sub-problems. Firstly, there is the Virtual
Network Mapping problem [1], which tackles the problem of
mapping virtual resources in the physical infrastructure,
concerning about the efficient resource mapping while dealing
with the simultaneous optimization of the placement of virtual
nodes and links on a substrate network. Secondly, assuming
that the virtual network has been provisioned, the adaptive
maintenance itself comes into play in order to deal with
dynamic changes from the variations in the substrates and
virtual networks, also related to failures, mobility, migration
and maintenance needs. The idea behind the adaptive
provisioning is to maintain the original topology and service
levels agreements during the virtual network lifetime. The
virtual network provisioning involves virtual routers and links
management, such as live migration, and virtual router
allocation.

Although there are in the literature substantial amount of
work dealing with Virtual Network Mapping, from the
Network perspective, to the best of our knowledge, there are
few studies on adaptive provisioning of instantiated virtual
networks to cope with dynamic changes in service demands
and resource availability, mainly from the MAS perspective.

We have not dealt with Virtual Network Mapping problem
yet, as this paper cover mainly the adaptive provisioning, in
which it maintains the virtual network running as efficiently as
possible during the virtual network lifetime. In order to solve
the virtual network provisioning problem, many approaches
have been suggested dealing mostly with (i) virtual node live
migration to a distinct host and (ii) virtual link reassignment
and setup to preserve the virtual network topology.

For instance, the authors of [13] proposed an autonomic

system called Violin, which manages a virtual environment,
composed of virtual nodes capable of live migration across a
multi-domain physical infrastructure. Moreover, in [14], the
authors proposed an adaptive virtual resource provisioning,
which brings substrate node agents to cope with failures and
severe performance degradation in network virtualization.
Furthermore, [15] proposes a distributed self-organizing
model to manage the substrate network resources. There also
exists approaches dealing with virtual link reassignment, as
the system proposed in [16], in which it changes the mapping
of virtual links if the load of specific physical links increases
more than a certain threshold.

We note that these approaches have treated the virtual
network management from a semi-decentralized way, in
which the autonomic entities are spread only over substrate
nodes. Differently from those highlighted research, the self-
organizing model proposed in this paper addresses the
management of substrate and virtual resources by taking
advantage of the total distribution of the autonomic entities
spread all over the network, including virtual networks rather
than only substrate nodes.

III. CONCEPTS
Recent research has pointed out network virtualization as a

promising technique to deploy future networks that meet
current and future users requirements [7][3][10]. The main
idea behind network virtualization is of slicing (sharing)
physical resources to create multiple virtual networks capable
of running its own protocols, services and management
solutions. Hence, its main concept relies on the fact that it
adjusts the network flow and routes, in an autonomic way,
dismissing any kind of central/external control. It aims to
maintain the quality of service (QoS) defined in the SLA by
controlling the agent’s behaviors through norms. Each
substrate and virtual node has a piloting agent embedded,
which is responsible for capturing local information, reasoning
about the collected data by translating simple measurements
into significant knowledge, exchanging the acquired
knowledge and supporting the instantiation and management
of virtual resources. Therefore, it is in charge of managing
virtual resources already existent by replacing or migrating
overloaded virtual routers, or creating and instantiating new
ones.

The main characteristics of the architecture for
virtualization, in which a virtual network represents a
collection of virtual routers connected together by a set of
virtual links to form a virtual topology, which is essentially a
subset mapped on the top of the underlying physical network,
is regarding to (i) virtual node, and (ii) substrate node. Virtual
nodes are hosted on a particular substrate node, in other
words, it is a slice of its physical host, comprising CPU,
memory RAM, storage capacity, etc. The substrate node,
usually composed of physical resources, the resource manager,
virtual nodes and virtual links, consists of devices such as
router, access points or physical links, and are able to embed
many virtual nodes. Further details regarding to virtual

Valadares, Netto and Lucena

42

network architecture can be found in projects like 4AWARD
[4].

A. Network Virtualization Management
Network virtualization management, therefore, involves

operations such as instantiating, deleting, monitoring,
migrating virtual networks elements and setting its resource-
allocation parameters. Such functionalities are what make our
piloting system a suitable model for creating and managing
multiple virtual networks and, as a consequence, for
supporting the pluralist approach for the Future Internet, since
it is able to create multiple customized virtual networks at the
same time it exhibits a flexible management and a real-time
control [17]. An important challenge on network virtualization
is the efficient allocation of the physical resources at virtual
network mapping and adaptive provisioning stage. To
accomplish such efficient use the management of the physical
resources should be frequently executed at runtime in order to
deal with the variation on the load requests of different users.

B. Multi-Agent System
Recent research has pointed out that providing a distributed

self-organized approach for the management of virtual
networks is a viable solution to deal with the increase of
complexity that network virtualization has brought. We
strongly believe that such complexity could be handled by
autonomic computing together with the concept of Multi-
Agent System (MAS), Norms and Self-* properties.

We propose a virtual network architecture applying the
MAS paradigm as a modeling foundation. We have chosen
such paradigm mostly because it seems to be particularly
suitable to build automatic system, due to some properties of
agents, such as autonomy, proactivity, adaptability,
cooperating, and mobility. Moreover, the notions of agents
and organizations and their decentralized and pro-active nature
match well the requirements of large-scale autonomic
computing environments. In the other hand, Self-* brings to
the piloting model the ability to self-manage its own resources
in order to meet polices and user’s requirements.

Accordingly, this paper provides the design and evaluation
of a distributed, autonomic and self-organizing system based
on MAS and Self-Organizing approaches [13] to ensure
distributed negotiation and synchronization between the
substrate nodes and virtual resources, so that the virtual and
physical nodes are able to handle autonomous and intelligent
agents, which exchange messages and cooperate to each other
to carry out the distributed virtual network management. We
apply such concepts to enable communications between the
substrate and virtual agents to gain performance and
scalability results of the distributed and autonomic virtual
network manager, in order to tackle the virtual network
adaptive provisioning challenge.

IV. SELF-ORGANIZING MODEL
Our normative and self-organizing piloting system is based

on a distributed algorithm, which embeds an autonomic agent

inside every virtual and physical node, disseminated all over
the substrate and virtual network. The agents monitor, capture
and reason about local information, communicate with each
other, cooperating, in order to exchange their local knowledge
and decisions feedback, so that each piloting agent turns into
an autonomic entity capable of inferring about the global
network state and, as a consequence, supporting the core of
the self-organizing model to trigger adaptation plans
depending on the local knowledge, global inferring and
environment condition.

The control loop consists of four main behaviors: collector,
analyzer, decision maker and executor, which are executed
every so often. Firstly, relevant data from the measurement of
availability of resources and network load is acquired by the
behavior known as Collector, which is also responsible for
storing this local information. Secondly, the Analyzer
behavior comes into play in order to translate the measured
information and the exchanged knowledge into local
knowledge, it also checks if the translated data is in
accordance with the quality of service and policies
requirements by verifying whether a re-organization of virtual
components is required. Afterwards, the Decision Maker
thought the knowledge analyzed, might active a self-
organization by running an adaptive plan. Such reorganization
is activated by the identification of both network overload or
lack of resources inside the substrate and virtual node.

The Decision Maker represents the core of our piloting
system, since it is responsible for having the virtual network as
stable as possible, avoiding any kind of bottleneck, overloaded
link, and keeping high levels of quality of Service. It is in
charge of translating the analyzed data into an action that
might prevent future critical scenarios. The adaptive plans, re-
organize the virtual network resources for a more efficient use
of them. Such re-organization might be triggered by the
detection of an (i) overloaded substrate node, which triggers
the replacement of virtual node behavior, responsible for
replacing a virtual router by a new one capable of handling the
actual demand, and (ii) the identification of lack of physical
resources in the virtual node, which causes, in this case, an
increasing of the virtual node capacity.

The following components give us a better description of
the self-organizing architecture itself:

A. Self-organizing behaviors and the cognition loop
We have designed supporting behaviors, which encompass

the ones responsible for the communication task, knowledge
sharing, event trigger, and environment sensors and adaptive
plans behaviors, which represent the actions taken by the
decision-maker. The later has used ontologies for a proper
understanding while exchanging actions requests between
agents. Such behaviors are divided in three distinct categories:
Adaptive plans, Environment sensors and Control loop.

1) Adaptive Plans.
Create Virtual Router: Creating a virtual node can

impact the virtual network in two distinct ways. In the first

A Normative and Self-Organizing Piloting Model for Virtual Network Management

43

case, if an existent virtual node is running multiple flows from
different users request, its piloting agent might trigger an
adaptive plan that will tackle the instantiation of a new virtual
router to balance the requested flows. From the instantiation
on, the flows get balanced between those two virtual nodes
and the new virtual router starts to respond some of the
requested flows. The second case occurs when it supports the
Replace virtual node adaptive plan, explained bellow.

Replace Virtual Router: The replace virtual node plan is
triggered in a specific scenario where a virtual router suffers
from anomalies and failures such as lack of resource, link
overload or when it gets unresponsive. Together with the
Create Virtual Router plan, they create a new virtual router,
capable of handling the current demand and users requests,
and the new virtual router takes place of the failed virtual
router. All services and flows must be kept running inside the
new virtual router.

Migrate Virtual Router: Migrating virtual nodes across
distinct physical hosts is an important functionality of our
virtual network manager through the piloting system: It
facilitates fault management and load balancing, since we can
migrate virtual nodes aiming a better distribution of network
load usage. Whether the piloting agent detects a future critical
scenario regarding to physical resources, it might trigger the
migrate adaptive plan, which is responsible for migrating a
running virtual node to a different substrate node, maintaining
the same virtual topology and running process.

2) Environment Sensors.
Monitor: Monitors are behaviors coupled to the Collector

behavior to handle the different types of data collection; they
are responsible for measuring specific information from links
and physical resources, which will be later filtered in the
Collector actions. The Monitors are composed of (i) devices
monitors, which is in charge of monitoring Ethernet and
virtual devices, (ii) routers monitors, that monitors the router
tables running inside a virtual node and (iii) resources
monitor, which will monitor physical and virtual resources
such as memory RAM, CPU, IO load, etc.

Informers: Such behaviors are responsible for the
communication between autonomic entities- virtual and
physical. It sends request of data update, when a virtual node
has out dated information related to its neighbors, it caries out
knowledge sharing and inform the running events, such as the
execution of an adaptive plan.

3) Control Loop
The core of our self-organizing model is composed of an

autonomic control loop, in which four behaviors run
frequently. Such behaviors come in to action as a machine
state, where there exists distinct transitions between the
behaviors depending on the state of the piloting agent. The
components of the main control loop are:

Collector: The collector is responsible for obtaining
information, supervising, monitoring and storing necessary
measurement from network links, physical and virtual

resources that are of significance to the self-properties of the
underlying network. It captures data from both substrate and
virtual nodes and also from the neighborhood.

Analyzer: The acquired data, from the Collector, is
translated into knowledge by the Analyzer behavior that
checks whether they are in accordance with the quality of
services and required policies. Accordingly, it verifies the
current performance, predicts future critical scenarios and
detects events, such as link overload. It is also in charge of
activating the decision-making, in case of adaptation need.

Decision Maker: The core of our self-organizing piloting
model makes decision according to the knowledge retrieved
by the Collector and Analyzer, also from the knowledge
exchanged between neighbors nodes. Such decisions depend
essentially on the virtual network state, the local knowledge
and the norms undertaken. The decision itself is based on the
choice of adaptation plans previously designed, such as (i)
activating the creation or the delete of a virtual node, (ii)
tuning the amount of virtual resources allocated to a specific
virtual node, and (iii) migrating a virtual node to a different
physical host.

Executor: The executor actually performs the decision
previously made by reconfiguring the managed component
and communicating with other autonomic managers.

B. Norms
In order to provide a controlled autonomy to the virtual

devices, restricting its behaviors to prevent malfunctions and
undesirable behaviors, we apply the concept of normative
agents. Thus, the proposed model is responsible for adjusting
the network flow and routes by controlling the agents’
behaviors through norms. Such norms are what makes the
piloting model aware of the required polices, quality of
services and user’s requirements (SLA and QoS).

The normative regulation system is divided into two
groups, virtual and physical, in which the piloting agents
might (i) abide by the norm, and (ii) violate the norm, it also
can restrict access to the network to those agents that violate
such norms by delaying their control-loop execution. Such
norms are checked every so often through the piloting control
loop and it informs the agent’s neighbors all norms that have
been complied or violated.

C. Self-Organizing Piloting Communication
In order to validate the multi-agent self-organizing piloting

system based on a distributed algorithm, which consists of
autonomic entities spread all over the virtual network, we first
need to evaluate the best mean of communication between the
piloting system components. Such evaluation represents an
important sub-task of our work, since it supports describing a
proper self-organizing model for the context of autonomic
virtual network management.

 The use of multi-agent communication to represent the
piloting system model is essential since our piloting system
makes use of this autonomic communication between agents

Valadares, Netto and Lucena

44

of different substrate nodes to gain advantages over traditional
approaches to manage virtual networks. In developing our
piloting model and implementing it we have had to address
two key issues regarding to the agent communication:

1) Where do we host the virtual piloting agents?
2) How to ensure the reliability in such distribution?

It has been necessary to simulate different scenarios for
different methodologies bearing in mind mainly the efficiency
of the piloting prototype. The major advantage the piloting
system can offer through the communication approach itself
lies in the fact that through the communication between
piloting agents from different virtual and physical machines
we can ensure that the virtual nodes of the network are in
accordance with the rules and policies of the model.

The first issue we addressed by simulating different
scenarios where we host the piloting agent under the substrate
node and under the virtual node, in which we could be able to
automatically reproduce adaptive plans for a given adaptive
scenario. The second issue we addressed by defining a suitable
set of norms and adaptive plans that incorporates both
anomalies from the surrounding environment, and failures of
distributed communication cases. By avoiding having to
develop extra requirement norms for the case in which the
piloting agent is hosted under the virtual node, we reduce the
amount of norms, and are able to ensure that the self-
organizing model and its adaptive plans are more reliable.

V. PROOF OF CONCEPT AND INITIAL EXPERIMENTS
The initial experiments correspond to scenarios where

virtual and physical resources, allocated to the virtual network,
suffer from anomalies such as substrate/virtual node overload.
The piloting system maintains the virtual network topology by
selecting new virtual or physical resource to replace or
compensate for the affected resource. Two resource failure
scenarios are discussed in this paper: (i) virtual node overload,
and (ii) substrate node overload. We aim, through the proof of
concept, show that MAS and self-* capabilities are feasible
approaches to deal with virtual network complexity. Thus, we
present adaptive plans to deal with both critical scenarios in
order to measure the effectiveness of the proposed piloting
system and its ability to self-manage its virtual resources
under critical scenarios, by dynamically binding and allocating
new resources to maintain the virtual network.

Virtual node overload: When the piloting agent detects
that its supported virtual node is about to get overload, it must
either request its substrate node it belongs to allocate, at
runtime, resources for the virtual node or, if not possible, re-
instantiate a new virtual node in the same substrate node to
take place of the failed node. The virtual links associated with
the affected virtual node should also be reallocated if
necessary.

Substrate node overload: When a substrate node, that
hosts multiple virtual nodes, fails, gets overloaded or gets

unresponsive, all agents hosted on its virtual nodes can detect
such failure through keep-alive messages exchanged
periodically. Only substrate node agents that belong to the
same neighborhood are allowed to collaborate in order to
choose alternative hosts where the affected virtual nodes as
well as their associated links will be migrated or allocated.
Thus, the distributed adaptive migrate router plan is executed
for each virtual node hosted inside the substrate node in which
the failure was detected.

A. Experimental Setup
We carried out preliminary experiments in which the virtual

network topology and the initial mapping of the virtual
network allocated on the top of the computers A, B and C, are
arranged as depicted in Figure 2. The virtual network itself
contains two virtual nodes, Va and Vb, hosted inside the
substrate nodes A and B respectively. Two sets of flows are
running inside the virtual network. Although the simplicity of
this setup, it has enabled us to evaluate two different
scenarios:

Case 1: For the first scenario we set up a virtual network
containing two virtual nodes, Va and Vb, with 256MB of
memory RAM and a limited network bandwidth of 5MB/s
each. The virtual network runs a data flow associated to the
user’s request, in which the packets are transmitted over the
virtual link starting at the virtual node Va and arriving at the
node Vb. The experiment itself consist of generating a large
amount of data flow and forwarding them to the virtual node
Va, hosted inside the substrate node A, in order to force a
network performance degradation. In the meantime, when the
virtual node Va is about to dismiss the QoS, due to the
overload caused by the traffic generator, its supporting
piloting agent detects a possible future failure and acts upon it
by creating a new virtual node, capable of handling the current
data flow as it has larger network bandwidth, and replacing the
affected router with the new one, maintaining the same
network configuration and data flow settings. In matter of a
few seconds, after a small interference (~3 seconds), the
virtual network and the virtual link get stable again, obeying
the required norms and, as consequence, the user’s request no
longer gets fuzzy. This experiment, despite being simple,
simulates a scenario in which agents located inside virtual
nodes are able to detect high utilization either of the virtual
links or virtual resources and decide to update or replace the
affected virtual node.

Case 2: The second scenario differs from the first one in
that it handles live virtual node migration instead or node
replacement. Similar to the previous experiment, we set up a
virtual network, maintaining the same topology and capacity,
also responding to a user’s request. Unlike the first scenario,
the purpose of this one is to generate a large amount of data
flow and forward the generated packets to the substrate node
A, in order to overload the substrate node A instead of the
virtual node. After a short while, when the substrate node is

A Normative and Self-Organizing Piloting Model for Virtual Network Management

45

Figure 2. a) The initial Virtual network setup; b) Case1 result; c) Case 2 result.

about to get overloaded due to the traffic generator and, as
consequence, next to dismiss the QoS, its supporting piloting
agent, in accordance with the required norms, triggers the
adaptation plan responsible for the virtual node live migration.
The piloting agent responsible for supporting the affected
physical machine is then in charge of applying the live
migration algorithm on all virtual nodes the affected node
hosts. The algorithm itself considers only physical routers
from the neighbourhood to support the decision on where to
migrate, and the closest one with enough resource availability
is the one chosen as destination. In matter of a few seconds,
the virtual node is then hosted inside a different substrate node
from the neighbourhood, in this case, the substrate node C.
This experiment simulates a scenario where agents located
inside substrate nodes detect a high utilization of the physical
resources and decide to migrate the virtual nodes from
affected physical routers.

VI. CONCLUSION AND FUTURE WORK
We analyzed the impact and the effectiveness of the self-

organizing behavior emerged from our proposed piloting
model, in which it is able to control and manage virtual
resources in order to address the complexity of an autonomic
virtual network management. Through this research we have
proposed and validates an autonomic piloting model from the
multi-agent system perspective. The experimental results of
this paper showed us that it satisfies the model’s main goal of
automatically reconfigure itself, in order to meet the quality
requirements and to improve the network performance
whenever it is exposed to a critical scenario.

Through our piloting system, we show that it is possible to
design an autonomic virtual network manager by applying
MAS approach together with self-* capabilities in order to
distribute the responsibility to maintain the virtual network
running in accordance with the policies and requirements.
Although our current work has focused on piloting system
designing, modeling and agent communication, we believe
that this general model will certainly support the development
of more complex network structure, which will be able to
perform live migration of virtual routers supported by agent
reputation, virtual link management, normative approach to
support the policies and requirements, all those from the MAS
perspective. We also highlight that, besides the topics above,
virtual link management, process of knowledge acquiring
/sharing and live migration, considering agent reputation, are
important points that deserve our attention in a near future

investigations.

REFERENCES
[1] J. Nogueira, et. al., "Virtual network mapping into heterogeneous

substrate networks", in ISCC 2011, June 2011.
[2] A. Fischer, J. F. Botero, M. Duelli, D. Schlosser, X. Hesselbach, and H.

De Meer. “ALEVIN - a framework to develop, compare, and analyze
virtual network embedding algorithms”, In: Electronic Communications
of the EASST, 2011, vol. 37, pp. 1–12.

[3] D. Clark, R. Braden, K. Sollins, J. Wroclawski, D. Katabi, J. Kulik, X.
Yang, T. Faber, A. Falk, V. Pingali, M. Handley, and N. Chiappa. “New
Arch: Future generation Internet architecture”, Technical report, MIT
Laboratory for Computer Science and International Computer Science
Institute (ICSI), 2011.

[4] “4WARD FP7 project.” [Online]. Available: http://www.4ward-
project.eu/

[5] I. Fajjari, M. Ayari, G. Pujolle and Hubert Zimmermann. r“Towards an
Autonomic Piloting Virtual Network Architecture”, In: IFIP
International Conference on New Technologies, Mobility and Security -
NTMS, IEEE XPlore, 2011, Paris, France.

[6] M. A. Netto, B. S. Neto, E. Cirilo, C. Lucena. “A Self-Organizing and
Normative Piloting System”. Technical repot, Pontifícia Universidade
Católica do Rio de Janeiro, 2013, 05/13.

[7] M. S. Blumenthal and D. D. Clark. “Rethinking the design of the Internet:
the end-to-end arguments vs. the brave new world”, In: ACM
Transactions on Internet Technology, 2001, 1(1):70–109.

[8] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T.
Schooley. “Evaluating Xen for router virtualization”, In: International
Workshop on Performance Modeling and Evaluation (PMECT), 2007.

[9] N. Feamster, L. Gao, and J. Rexford. “How to lease the Internet in your
spare time”, In: SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp.
61-64, 2007.

[10] N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto, H. Carvalho,
M. Campista, L. Costa, and O. Duarte. “Virtual networks: isolation,
performance, and trends”, In: Annals of Telecommunications, 2011, vol.
66, pp. 339–355.

[11] P. Horn “Autonomic computing: IBM’s perspective on the state of
information technology, also known as IBM’s Autonomic Computing”,
2001.

[12] T. Anderson, L. Peterson, S. Shenker, and J. Turner. ”Overcoming the
Internet impasse through virtualization”, In: IEEE Computer Magazine,
2005, vol. 38, no. 4, pp. 34-4.

[13] P. Ruth, J. Rhee, D. Xu, R. Kennell and S. Goasguen. "Autonomic live
adaptation of virtual computational environments in a multi-domain
infrastructure", In: Proc. IEEE ICAC, 2006, pp.5 -14 .

[14] Ines Houidi, Wajdi Louati, Djamal Zeghlache, Panagiotis Papadimitriou,
Laurent Mathy “Adaptive virtual network provisioning”, In: Proceedings
of the second ACM SIGCOMM workshop on Virtualized infrastructure
systems and architectures, 2010, New Delhi, India .

[15] C. Marquezan, L. Granville, G. Nunzi, and M. Brunner. “Distributed
autonomic resource management for network virtualization,” In:
Network Operations and Management Symposium (NOMS) IEEE,
2010, pp. 463-470.

[16] C. Senna, M. Soares, D. Batista, E. Madeira, and N. Fonseca.
“Experiments with a self-management system for virtual networks,” in II
Workshop de Pesquisa Experimental da Internet do Futuro (WPEIF),
2011, Campo Grande.

[17] N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L. H. G. Ferraz, R. S.
Couto, H. E. T. Carvalho, M. E. M. Campista, L. H. M. K. Costa, and O.
C. M. B. Duarte, “Virtual networks: Isolation, performance, and trends,”
To be published in the Annals of Telecommunications, 2010.

Valadares, Netto and Lucena

46

A Multiagent System for Urban Traffic Control

Antonio de Abreu Batista Júnior
Núcleo de Tecnologia da Informação
Universidade Federal do Maranhão

São Luı́s, Maranhão, Brasil
junior2004@pop.com.br

Luciano Reis Coutinho
Departamento de Informática

Universidade Federal do Maranhão
São Luı́s, Maranhão, Brasil

lrc@deinf.ufma.br

Abstract— In this paper we propose a multiagent system
(MAS) – designed as a social organization – to operate in
the control of successive signals along a section of an avenue
that combines green wave and adaptive control in a dynamic
way. The members of this organization represent traffic agents
that communicate among themselve via a specific purpose
interaction protocol. On the one hand, the coordination of
successive signals is achieved dynamically through standardized
communication between organizational roles. On the other
hand, the adaptive control is achieved by the independent and
autonomous actions of the agents that make up the organization.
We test our approach in simulation. The results show that
our approach result in good performance, achieving both local
control at the intersections as well as coordination of successive
intersections.

Index Terms— multiagent coordination, intelligent traffic
control, traffic simulation, social organization.

I. INTRODUÇÃO

O problema do congestionamento é uma questão séria na
vida urbana causando transtornos sociais tais como atrasos,
perdas econômicas e poluição ambiental [1]. Há muitos
aspectos técnicos e sociais com relação a mobilidade que
afetam o trânsito e necessitam de melhoras, um deles é como
os semáforos regulam os fluxos de veı́culos nas interseções.
Com relação a esse aspecto, uma abordagem usada é o
controle adaptativo, onde se busca otimizar o desempenho de
cada semáforo de uma forma isolada. Todavia, a suposição
de interseção isolada simplifica o problema de otimização da
rede viária por não considerar os conflitos que surgem entre
interseções adjacentes. Uma outra abordagem empregada é a
sincronização de sucessivos sinais para alcançar a chamada
onda verde. No entanto, a onda verde tem seus benefı́cios
reduzidos justamente por não exibir o controle adaptativo.

Neste artigo, nós propomos um sistema multiagente
(SMA) – concebido como uma organização social – para
operar no controle de sucessivos sinais ao longo de uma
seção de uma avenida que combina onda verde e controle
adaptativo de uma forma dinâmica. Os membros dessa
organização representam agentes de trânsito que se comu-
nicam entre si por meio de um protocolo de uso especı́fico.
Por um lado, a coordenação de sucessivos sinais é alcançada
dinamicamente através da comunicação padronizada entre
papéis organizacionais. Por outro lado, o controle adaptativo
é alcançado pelas ações autônomas e independente dos
agentes que compõem a organização.

Este trabalho é inspirado na atuação dos agentes humanos

no controle do tráfego urbano. A imitação do comportamento
autônomo dos agentes e da ação conjunta deles em uma
organização social são as bases para este trabalho.

Este artigo está organizado como segue. Na seção II
nós apresentamos alguns trabalhos relacionados. Na seção
III, nós propomos uma nova arquitetura multiagente para
o controle do tráfego urbano que imita uma organização
social. A seguir, na seção IV discutimos os detalhes de
implementação e os resultados de simulação. Finalmente, na
seção V concluı́mos o artigo e apontamos as direções das
pequisas futuras.

II. TRABALHOS RELACIONADOS

Em [1] é proposta uma abordagem baseada em agentes,
onde cada interseção é controlada por um agente auto
interessado operando com uma visão limitada da chegada
de veı́culos. A questão central dessa abordagem é uma
representação agregada dos fluxos de tráfego como padrões
agregados crı́ticos de filas e pelotões antecipados. Esses
padrões agregados fornecem a base para polı́ticas de controle
de sinais em tempo real que incorpora uma visão antecipada
do fluxo de veı́culos. Os autores projetaram duas polı́ticas
baseadas em pelotões com o objetivo de decidir se estende
ou não a fase através de perı́odos ociosos sem tráfego, a
fim de servir tráfego futuro, com o objetivo de promover
coordenação indireta entre sucessivos sinais e o estabeleci-
mento de ondas verdes.

Em [2] é apresentada uma abordagem onde cada semáforo
se comporta como um inseto social, tendo planos coordena-
dos de sinais como tarefas a serem executadas. O modelo
utiliza um mecanismo de comunicação restrita e grupos co-
ordenados são formados de uma maneira dinâmica. A abor-
dagem pretende combinar as vantagens da descentralização,
via swarm intelligence e a formação dinâmica de grupos.
A principal vantagem desta abordagem é a adaptação às
mudanças no tráfego. As mudanças são percebidas e os agen-
tes reagem a essas mudanças de forma rápida e independente,
sem qualquer organização hierárquica.

Em [3] é descrito uma abordagem onde cada semáforo
é modelado como um agente. Cada um possui planos pré-
definidos para sincronização/coordenação com agentes ad-
jacentes em diferentes direções de acordo com a situação
do tráfego. Essa abordagem utiliza técnicas de teoria dos
jogos evolucionária, tendo como principais benefı́cios: os
agentes podem criar subgrupos de sincronização para melhor

A Multiagent System for Urban Traffic Control

47

atender as necessidades do fluxo em alguma direção, não há
necessidade de um controle central e não há comunicação
nem negociação direta entre os agentes.

In [4] é considerado uma abordagem que mistura redes
neurais, aprendizagem por reforço e lógica fuzzy para apren-
der em tempo real os comportamentos dos sinais de trânsitos.
Porém a parte que interessa a esse trabalho é a maneira
como o problema da coordenação entre sinais adjacentes foi
modelada. A coordenação é feita usando agentes de controle
e o conceito de teoria dos jogos. Um algoritmo foi projetado
para resolver o problema da coordenação diretamente, sem
que nenhuma negociação acontecesse.

Em [5] é proposto um framework multiagente para o
controle de sinais que combina coordenação indireta e direta.
A reação a fluxo de tráfego dinâmico é atendido pela
coordenação indireta e a formação de onda verde é atendida
pela coordenação direta. Em fluxo de tráfego diário normal,
cada agente opera no modo de coordenação indireta. Porém,
quando o fluxo de tráfego colapsa próximo a certos agentes,
os agentes mudam seu modo de coordenação para o modo
de coordenação direta para formar um grupo organizado que
crie onda verde.

Em [6] é desenvolvido um modelo de fluxo de tráfego,
composto pelos seguintes elementos: estradas, cruzamentos,
semáforos e volumes de veı́culos. Para garantir os resultados
esperados, um algoritmo de formigas foi aplicado no qual
os veı́culos em movimento nas estradas do modelo deixam
feromônio dependendo de quanto tempo eles iriam esperar
para atravessar um cruzamento particular. Para estradas con-
gestionadas com sequências de semáforos mal coordenados,
um nı́vel adequado de feromônio depositado incentivaria
o tráfego a ser direcionado em uma direção apropriada.
Esta relação entre o tempo de espera e a concentração de
feromônio também funcionaria como um sinal para iniciar
mudanças em sequências de semáforos nas interseções de
modo que os veı́culos poderiam sair mais rapidamente da
área congestionada.

Os trabalhos citados são muito atrativos e apresentam bons
resultados, porém as vantagens de se combinar o controle
adaptativo e a sincronização de sucessivos sinais ainda não
foi completamente explorado. Nós acreditamos que podemos
conseguir resultados ainda melhores. Neste artigo nós pro-
pomos um sistema multiagente para o controle do tráfego
urbano que explora essas caracterı́sticas. O sistema é capaz
de sincronizar sucessivos sinais de uma forma dinâmica e
localmente exibir controle adaptativo.

III. UMA ARQUITETURA ORGANIZACIONAL
PARA O CONTROLE DO TRÁFEGO URBANO

A Fig. 1 mostra uma visão geral da arquitetura. Aqui, a
camada organizacional estabelece um conjunto de restrições
que moldam ou restringem a atividade conjunta dentro da
organização tendo em vista o propósito de combinar onda
verde e controle adaptativo sobre a via arterial. A segunda
camada é a camada sobre a qual a organização de agentes
executa. Essa camada fornece toda infraestrutura necessária

para implementação distribuı́da dos agentes. A terceira ca-
mada é a camada sobre a qual os agentes operam. O ambiente
é suposto ser o ambiente real, porém para propósito de
teste, como descrito neste trabalho, o ambiente pode ser um
simulador de tráfego.

Fig. 1. Visão geral da Arquitetura em Camadas.

A seguir definimos um agente de trânsito desta
organização social.

A. Agente de Trânsito BDI
São entidades de software que estão situadas em um

ambiente dinâmico, que recebem continuamente informações
sobre ele e tomam ações para modificá-lo, tudo baseado
em seu estado mental interno. Crenças, Desejos e Intenções
são as três atitudes mentais e elas capturam os componen-
tes informacionais, motivacionais, e de decisões do agente,
respectivamente.

1) Crenças: As crenças C de um agente j são usadas
para determinar que pré-condições de planos da biblioteca
de planos do agente são satisfeitas. Por meio de sensores
distribuı́dos sobre as pistas e da interação com outros agentes
adjacentes, o agente j captura uma coleção de informações,
sobre o cruzamento j que ele controla, criando um mundo
virtual que ele acredita existir e sobre o qual gera desejos.
Na tabela I essas crenças são apresentadas.

TABLE I
MUNDO VIRTUAL CRIADO PELO AGENTE J.

Base de Crenças do Agente j
Plano semafórico i em uso no cruzamento j (PSi

j)
Grau de saturação do link crı́tico de cada fase i do cruzamento j (Satij)

Número de carros na fila n

Onde o grau de saturação de um link crı́tico é dado pela
fórmula,

Satij =
V ecIn

V ecOut
(1)

Sendo que V ecIn é o número de veı́culos que deseja
atravessar a área de retenção do cruzamento j e V ecOut

Batista Jr and Coutinho

48

é o número de veı́culos que pode atravessar, ambos medidos
em um certa quantidade de ciclos.

Em termos práticos, o grau de saturação de um link
reflete seu nı́vel de carregamento. Por exemplo, se o grau de
saturação de um link é igual a 50% (Satij = 0.5), significa
que poderia passar duas vezes o número de veı́culos durante
o tempo de verde adotado. Um outro exemplo, se o grau
de saturação de um link é igual a 150% (Satij = 1.5), isto
significa que dois terços dos veı́culos cruzariam a área de
retenção durante o tempo de verde adotado enquanto um
terço seria retido para o próximo perı́odo.

2) Desejos: Os desejos de um agente são as pós-
condições de planos da biblioteca de planos do agente. Os de-
sejos de um agente j são um conjunto de pares 〈d,Conddj〉
tal que, d é um desejo e Conddj é uma atribuição a uma
proposição p. A interpretação é que j acredita que o desejo
d é satisfeito se Conddj é satisfeita com relação a Cj .
A TABLE II mostra o modelo de objetivos do agente j
fictı́cio. O agente controla um cruzamento com duas fases
i = {1, 2}. Ele pode acionar 5 planos semafóricos. Ao
perceber o modelo do mundo, o agente decidirá se aciona
um plano semafórico ou mantém o atual.

TABLE II
MODELO DE OBJETIVOS DO AGENTE j .

d Conddj
PS1

j PS2
j

∧
Sat1j < 1.0

∧
Sat2j < 1.0

PS2
j (∀PSi

j 6= PS2
j)

∧
Sat1j > 1.5

∧
Sat2j < 1.0

PS3
j (∀PSi

j 6= PS3
j)

∧
Sat1j > 1.5

∧
Sat2j > 1.5

PS4
j (∀PSi

j 6= PS4
j)

∧
Sat1j < 1.0

∧
Sat2j > 1.5

PS5
j PS4

j

∧
Sat1j < 1.0

∧
Sat2j < 1.5

3) Intenções: As intenções de um agente representam os
desejos 〈d,Conddj〉 que ele se compromete a alcançar. Esse
comprometimento, do agente com um objetivo, se dá por
dois motivos:

• Ou porque ele faz parte de uma sociedade, e assim, ele
resolve atender um pedido de outro agente para alcançar
um objetivo em prol do funcionamento coerente da
comunidade; ou

• Porque após a análise do seu modelo de mundo atual,
ele deseja algo diferente. Ele acredita que a execução de
um determinado plano pode levar ao modelo de mundo
pretendido.

A seguir é definido o protocolo de interação usado pelos
agentes de trânsito. Ele foi criado com o propósito de
direcionar as ações dos agentes para criar ondas verdes
dinamicamente, sobre a artéria na direção de fluxo mais
carregado. Porém mantendo as preocupações locais de cada
agente, tais como, não deixar criar filas em nenhuma das
pistas dos cruzamentos que eles controlam.

B. Protocolo de Onda Verde Adaptativa (POVA)

Este protocolo usa a linguagem de comunicação KQML
[7] usada pelo interpretador Jason. Sua semântica é baseada
na teoria dos atos da fala definida em [8], onde as mensagens
estão associadas a atos performativos que representam a von-
tade do agente sobre a informação contida na mensagem. A
seguir é listado os atos performativos usados neste protocolo,
r é o emissor da mensagem e s o receptor:

• askOne é usado quando um agente r quer saber se
o conteúdo da mensagem é verdadeiro para um outro
agente s;

• tell é usado quando um agente r quer que um agente s
acredite que ele acredita que o conteúdo da mensagem
é verdadeiro;

• achieve é usado quando um agente r quer que o agente
s tente e alcance um estado de coisas onde a literal no
conteúdo da mensagem é verdadeira.

Nas próximas seções definimos a parte estática e dinâmica
do protocolo.

1) Estrutura Estática: Neste artigo, os agentes de trânsito
são vistos como membros de uma organização social. O mo-
delo MOISE+ [9], na Fig. 3, é usado para a especificação es-
trutural da organização. Nesta especificação, os Ag Trânsitos
são responsáveis por controlar a sequência de semáforos ao
longo da artéria. São definidos três papéis, Ag Externo, Ag
Meio, Ag Base. Os Ag Externos comandam os Ag Meios e
controlam as interseções das extremidades. Um Ag Base é o
Ag Externo que comanda a organização em um determinado
momento. Um Ag Externo é um Ag Base se ele possui
um objeto indicador que indica que ele é o Ag Base. Os
Ag Meios são responsáveis por controlarem as interseções
intermediárias e colaborarem com os Ag Externos.

Fig. 2. Estrutura organizacional do SMA, em MOISE+.

2) Estrutura Dinâmica: Nesta seção descrevemos a
dinâmica de funcionamento da organização de agentes. Por

A Multiagent System for Urban Traffic Control

49

meio de diagramas AUML [10], são ilustradas as sequências
de mensagens trocadas entre os papéis e os tipos de mensa-
gens que podem ser enviadas e recebidas por cada papel.

O protocolo prevê três situações - (1) que agente inicia
o protocolo, (2) o que um agente base sem o objeto de
negociação deve fazer para obtê-lo e, (3) de posse do objeto
de negociação, o que deve fazer o agente base quando a
situação do trânsito mudar.

Iniciando o protocolo: No diagrama AUML da Fig. 3 são
ilustradas as sequências e as mensagens trocadas para iniciar
o protocolo. Após o término da inicialização do sistema,
qualquer Ag Externo pode iniciar o protocolo. Um Ag
Externo, ao receber uma mensagem de inicialização deve
responder, indicando que ele tomou conhecimento e que ele
sabe a quem requisitar o objeto indicador. O Ag Externo
que iniciou o sistema, após receber a mensagem de resposta,
deve informar aos Ag Meios que ele é o Ag Base. Em
seguida, ele deve informá-los o objetivo que eles devem
alcançar achieve(objetivo).

Fig. 3. Inicialização do protocolo.

Adquirindo o objeto de negociação: A Fig. 4 ilustra a
troca de mensagens entre os papéis para adquirir o direito
de ser um Ag Base o objeto indicador. Sobre a artéria,
somente um Ag Base possuirá o direito de controlar o
sentido da onda verde, sendo este o responsável pela decisão
da liberação do direito a outro Ag Externo. No entanto,
assim que um Ag Externo analisa as condições de sua via
e verifica que necessita do direito de controlar o sentido da
onda verde, ele realiza um pedido do objeto ao Ag Base
que o possui. Assim que um Ag Base recebe um pedido do
objeto, ele analisa as condições de sua via e decide, através
da análise de suas crenças e objetivos, por passar ou não o
objeto de negociação. Caso resolva não passar o objeto, o
Ag Externo aguarda alguns segundos e tenta novamente.
Desta forma o objeto indicador passa de Ag Externo para
outro alternando o sentido da onda verde de acordo com o
sentido mais carregado da via arterial.

No diagrama também é mostrado que de posse do objeto
indicador o Ag Base requisita aos Ag Meios para alcançar
um objetivo. Um desejo d (plano semafórico) e uma condição
Conddj (situação do trânsito que deve ser mantida para
utilização do plano semafórico) são passados para os Ag

Meios. O alinhamento dos planos sobre a artéria se dá
quando cada Ag de trânsito individualmente alcança seus
objetivos (planos), uma vez que a defasagem entre os planos
foi previamente configurada.

Fig. 4. Adquirindo o objeto de negociação.

Mudando os objetivos: O diagrama AUML da Fig. 5
ilustra a situação em que a atualização de crenças leva a
novos objetivos. O Ag Base de posse do objeto pode mudar
o seu objetivo e reenviar um novo objetivo aos Ag Meios.

O controle Adaptativo é alcançado através da autonomia
dos agentes à medida que eles devem manter um estado
de coisas apropriado (situação do trânsito que deve ser
mantida para utilização do plano semafórico perseguido).
De um modo geral, os Ag de trânsitos mantêm o desejo de
implementar o plano semafórico alvo e, para satisfazer suas
vontades, modifica as condições do ambiente para que as pré-
condições do plano alvo sejam satisfeitas para que possam
adotá-lo. Após implementada a sua vontade, eles observam
continuamente as pós-condições do plano alvo de modo a
tomar ações para corrigi-lo, caso ele não esteja de acordo
com suas crenças.

IV. IMPLEMENTAÇÃO DO MODELO
Nesta seção, nós discutimos a implementação e testes para

validação do modelo.

A. Construção do Ambiente de Simulação

A Fig. 6 mostra uma visão geral do ambiente de
simulação. O interpretador Jason [11] é usado para criar os
agentes. O simulador de tráfego SUMO (Simulation of Urban
Mobility) [12] torna-se o ambiente onde os agentes atuam.
O Jason é integrado ao SUMO por meio da XTraCI API1.

1http://www.cs.cmu.edu/ xfxie/download/xtraci1.0.tar.gz

Batista Jr and Coutinho

50

Fig. 5. Informando novos objetivos.

Cada agente pode perceber e modificar a condição atual
do tráfego no cruzamento sob sua responsabilidade. Quando
um agente decide adotar um plano semafórico, um processo
é executado para modificar o plano semafórico atual, no
ambiente do simulador, para refletir a vontade do agente.
Da mesma forma, a percepção dos agentes é obtida através
de sensores espalhados pelo ambiente do simulador.

Fig. 6. Integrando Jason ao SUMO.

B. Cenário de Simulação

O experimento acontece sobre o cenário simples abstrato
da Fig. 7 e, tem dois objetivos:

Fig. 7. Arterial network.

1) Medir a capacidade de adaptabilidade em tempo real
dos agentes ao enfrentar problemas locais; e

2) Medir a habilidade dos agentes de se auto organizarem
criando onda verde, em um sentido programado, à
medida que as condições em seus cruzamentos forem
jugadas adequadas por eles.

Cada agente foi equipado com um conjunto de planos
previamente configurados e, apresentados na TABLE III.

TABLE III
PLANOS DOS AGENTES.

Planos Cı́clo Fase1 Fase2 Objetivo
plan 1 80 50 30 servir rapidamente
plan 2 120 80 40 Aumentar atendimento
plan 3 120 30 90 priorizar fase2

A velocidade máxima permitida na via arterial (A) é de
60 km/h e nas transversais (Ti) é de 40 km/h. Todos
os segmentos de pista têm o mesmo comprimento L=300
m. A fim de medir os objetivos 1 e 2, foram reproduzidas
situações de tráfego onde essas propriedades pudessem ser
avaliadas. Nós simulamos tráfego aleatório de um único tipo
de veı́culo. Os veı́culos partem das fontes P1, T 1, T 2 e T
3 de acordo com um processo de Poisson aproximado aqui
por uma distribuição binomial.

Resultados e Discussões: A Fig. IV simula uma possı́vel
situação de fluxo intenso nas transversais T2=3/16 e
T3=4/16, nos primeiros 20 minutos da simulação e, de fluxo
normal nos 40 minutos finais. Em contrapartida, na artéria,
há um aumento gradual do fluxo de veı́culos ao longo de uma
hora. Nos últimos 20 minutos, o fluxo é intenso sobre ela.
Com o propósito de medir o objetivo 1 o parâmetro TDTi

TABLE IV
NÚMERO DE VEÍCULOS/PERÍODO DE TEMPO GERADO EM CADA FONTE.

Cenário 1 T1 T2 T3 P4
1-20 min 1/30 3/16 3/16 1/30

21-40 min 1/30 1/30 1/30 4/16
41-60 min 1/30 1/30 1/30 1/16

foi usado para medir a adaptabilidade. O TDTi
representa

o atraso experienciado pelos veı́culos nas transversais Ti. O
cenário 1 é usado para verificar esse objetivo.

A TABLE V mostra o resultado das medições. A diferença
do atraso medido, TDTi , entre um agente capaz de perceber
e adaptar-se as variações de fluxo nas transversais e uma
estratégia de plano fixo foi bastante expressiva e, mostra o
ganho obtido quando controlado por um agente. Cada agente
individualmente é capaz de decidir o plano correto de acordo
com a situação percebida no seu cruzamento.

TABLE V
O ATRASO EXPERIENCIADO PELOS VEÍCULOS NAS TRANSVERSAIS

Forma de controle TDT1
TDT2

TDT3

∑3
i=1 TDTi

Plano fixo 50,8 6028,9 6425,3 12505,0
Agente 41,8 458,5 315,2 815,5

A Tab. VI reproduz uma situação de fluxo intenso em
T2 nos primeiros 20 minutos da simulação. Nos próximos
20 minutos T3 exibe fluxo intenso, enquanto a situação em
T2 se normaliza. Nos últimos 20 minutos o fluxo é normal
em T2 e T3. Por outro lado, na artéria, há uma diminuição
gradual do fluxo de veı́culos.

Com o propósito de medir a habilidade do SMA de criar
onda verde sobre a artéria, o parâmetro TDAi foi medido. O

A Multiagent System for Urban Traffic Control

51

TABLE VI
QUANTIDADE DE VEÍCULOS/SEGUNDO PARTINDO DAS FONTES

GERADORAS.

Cenário 2 T1 T2 T3 P4
1-20 min 1/30 3/16 1/16 2/16

21-40 min 1/30 1/30 3/16 2/16
41-60 min 1/30 1/30 1/30 1/16

TDAi
representa o atraso experienciado pelos veı́culos sobre

o segmento i da artéria.
Na TABLE VII é mostrado os resultados de simulação

do cenário 2. Os resultados mostram que nos primeiros
20 minutos da simulação há uma sobrecarga T2 = 3/16
sobre a pista transversal do cruzamento 2. Diante dessa
situação, o agente 2 adota planos para trazer a situação do seu
cruzamento para o estado normal. Nesse intervalo, a quebra
de sincronismo devido à necessidade de adaptação local,
causa atrasos nas pistas arteriais TDA2

e TDA3
. No entanto,

passados os primeiros 20 minutos a situação na transversal
do cruzamento 2 se normaliza T2 = 1/30. Essa condição é
percebida pelo agente 2 que imediatamente volta a adota o
plano de sincronismo. O valor de TDA2

= 0, medido nos
últimos 30 minutos da simulação, indica que há sincronismo
dos cruzamentos 1 e 2.

TABLE VII
O TDAi

SOBRE OS CRUZAMENTOS 2 AND 3 MEDIDOS EM UMA HORA

DE SIMULAÇÃO.

Primeiros 30 min útimos 30 min últimos 15 min
TDA2

TDA3
TDA2

TDA3
TDA2

TDA3

191 134 0 113 0 0

A mesma situação pode ser observada sobre o cruzamento
3, no intervalo de 20 à 40, o agente precisa constantemente
trocar de plano para normalizar as condições do tráfego.
Porém passado o intervalo, a situação volta a se normalizar
T3 = 1/30 e o agente adota o plano de sincronismo.
Novamente, essa situação pode ser vista na TABLE VII,
nos 15 minutos finais o valor dos parâmetros TDA2 = 0
e TDA3 = 0 é nulo, o que indica que o sistema está
sincronizado pela cruzamento 1.

Dessa forma, comprova-se a habilidade dos agentes de se
auto organizar para gerar fluxo suave quando as condições
são favoráveis. O mais comum é fluxo mais intenso sobre a
artéria, o que justifica o esforço dos agentes para manter o
sincronismo sobre ela.

V. CONCLUSÃO

Neste artigo, nós propomos um sistema multiagente – que
imita uma organização social – para operar no controle do
tráfego urbano combinando adaptação local e coordenação
de sucessivos semáforos. Um protocolo de uso especı́fico
foi usado internamente pela organização de agentes para
alinhar uma sequência de semáforos de uma forma dinâmica.
O controle adaptativo requerido para otimização local foi

alcançado pelas ações independentes e autônomas dos agen-
tes localmente. A arquitetura BDI foi usada para modelar a
parte cognitiva dos agentes de trânsito e um simulador de
tráfego foi usado para o propósito de teste e validação do
funcionamento do sistema.

Nós testamos nossa abordagem em simulação. Os resul-
tados mostraram que nossa abordagem resultou em uma
boa performance, alcançando tanto controle local quanto
coordenação de sucessivos sinais. A melhora na performance
é atribuı́da à autonomia dos agentes e à eficiência do proto-
colo de onda verde adaptativa.

No entanto, ainda há muito a ser investigado. Como tra-
balhos futuros pretendemos dar aos agentes à habilidade de
aprender novos planos, e desta forma, tornar o sistema pro-
posto independente das peculiaridades de cada sequência de
semáforos. Nós também pretendemos adicionar ao protocolo
mecanismos de tolerância a falhas e melhorar a capacidade
de percepção dos agentes.

REFERENCES

[1] X. Xie, G.J. Barlow, S.F. Smith, Z.B. Rubinstein, ”Platoon-Based Self-
Scheduling for Real-Time Traffic Signal Control,” in IEEE Internati-
onal Conference on Intelligent Transportation Systems (ITSC), pp.
879–884, 2011.

[2] D. Oliveira, A.L.C Bazzan, ”Swarm Intelligence Applied to Traffic
Lights Group Formation,” in VI Encontro Nacional de Inteligência
Artificial (ENIA 2007), pp. 1003-1012, 2007.

[3] A.L.C Bazzan, ”A Distributed Approach for Coordination of Traffic
Signal Agents,” in Autonomous Agents and Multi-Agent Systems, Vol.
10, pp. 131–164, 2005.

[4] S. Shamshirband, ”A Distributed Approach for Coordination Between
Traffic Lights Based on Game Theory,” The International Arab Journal
of Information Technology, pp. 148–152, 2012.

[5] T. Shirai, Y. Konaka, J. Yano, S. Nishimura, K. Kagawa, T. Morita, M.
Numao and S. Kurihara, ”Multi-agent traffic light control framework
based on direct and indirect coordination,” in Proceedings of the 7th
International Workshop on Agents in Traffic and Transportation, pp.
9–17, 2012.

[6] D. Król, M. Mrozek, ”Swarm-based Multi-agent Simulation: a Case
Study of Urban Traffic Flow in the city of Wroclaw,” ICCCI 2011,
LNAI 6923, Springer, pp. 191–200, 2011.

[7] T. Finin, R. Fritzson, D. McKay, R. McEntire, ”Kqml as an agent
communication language,” in Proceedings of the 3rd International
Conference on Information and Knowledge Management, pp. 456–
463, 1994.

[8] J. Searle,”Speech Acts: An Essay in the Philosophy of Language,”
Cambridge University Press, 1969.

[9] J. F. Hübner, J. S. Sichman, O. Boissier, ”S-moise+: A middleware for
developing organised multiagent systems,” in International Workshop
on Organizations in Multi-Agent Systems: From Organizations to
Organization Oriented Programming, pp. 107–120, 2005.

[10] B. Bauer, ”Extending uml for the specification of interaction proto-
cols,” in submission for the 6th Call for Proposal of FIPA and revised
version part of FIPA, 1999.

[11] R. H. Bordini, J. F. Hubner, M. Wooldridge, ”Programming Multi-
Agent Systems in AgentSpeak using Jason,” John Wiley & Sons,
London, UK, 2007.

[12] M. Behrisch, L. Bieker, J. Erdmann and D. Krajzewicz, ”SUMO -
Simulation of Urban MObility: An Overview,” in SIMUL 2011, The
Third International Conference on Advances in System Simulation,
pp. 63–68, 2011.

Batista Jr and Coutinho

52

Multiagent System to search
and contracting Tourism services

João Ferreira de Santanna Filho, Scheila Nair Costa, Camila Pontes B. da Costa,
Charbel Szymanski, João Eduardo Hornburg

PPGEAS – Department of Automation and Systems
Universidade Federal de Santa Catarina

Florianópolis, Brasil
{joaosantanna,Camila,charbel}@das.ufsc.br, {nc.scheila, joao.hornburg}@gmail.com

Abstract— This paper presents a multi-agent system (MAS)
to integrate the service offerings of numerous companies of the
tourism segment. This idea was motivated by world sporting
events that will happen in the coming years in Brazil (FIFA
World Cup and Olympics). The paper demonstrates that MAS’s
can be a platform for integrating distributed systems resulting in
more flexible systems with embedded intelligence.

Keywords— multi-agent system ; distributed systems; Tourism
services.

I. INTRODUÇÃO
Nos anos de 2014 e 2016 o Brasil será sede de dois

grandes eventos esportivos de nível mundial, a Copa do
mundo de Futebol e as Olimpíadas. De acordo com o
SEBRAE [1], a realização desses eventos proporciona uma
chance de promoção e atração de investimentos, alavancando
significativamente a economia brasileira. Estima-se que o
fluxo seja em torno de 600 mil turistas internacionais e 3.100
mil nacionais. É necessário que o setor de serviços se prepare
para esse aumento de demanda, em especial o setor Hoteleiro.

Todo esse montante de turistas deve utilizar algum meio
para programar e contratar serviços relacionados às viagens.
Nesse contexto, a utilização da Internet para o planejamento e
compra de pacotes de viagens tem se mostrado uma opção
cada vez mais popular. Várias empresas já dispõem de portais
para contratação de serviços tais como hotéis, locadoras de
carros, restaurantes, bares, serviços de concierge, etc. Todavia,
esses serviços encontram-se distribuídos cada qual com seu
próprio sitio na internet. Dessa maneira, o cliente se vê
obrigado a fazer uma pesquisa extensa na internet em busca de
melhores preços e melhores ofertas.

Segundo Zagheni and Luna [2], no Brasil, empresas
privadas e também do governo não utilizam todo o potencial
que a Internet oferece, ou seja, ela é vista apenas como um
canal de divulgação, podendo ser comparada com uma versão
eletrônica das listas telefônicas. Para que os clientes possam
usufruir dos benefícios das novas tecnologias, é necessário que
as empresas busquem formas mais simples, ágeis e eficientes
de tentar integrar esses serviços, facilitando a busca dos
clientes.

A tecnologia de Sistemas Multiagentes (SMA) pode surgir
como uma solução para o cenário apresentado. No presente

artigo se desenvolve um sistema multiagente (SMA) para a
contratação de serviços turísticos. Os agentes representam os
vários atores envolvidos no cenário proposto.

Por motivos de ordem prática, o SMA abordou apenas os
serviços de Hotelaria e Locação de Automóveis. Porém,
visando explorar os diversos recursos disponíveis em Sistemas
Multiagentes, foram utilizadas as tecnologias de ontologias,
sistemas especialistas e agentes do tipo reativo e cognitivo
(Agentes BDI). Para a comunicação entre os agentes foram
utilizados dois protocolos diferentes de transação, um baseado
em barganha (utilizado pelos agentes hotéis) e o Contract Net,
utilizado pelas locadoras de carros. O uso de todas essas
tecnologias em um único sistema visa demonstrar que um
SMA desse tipo pode atender a requisitos diferentes
demandados pelas empresas prestadoras de serviço.

O objetivo principal deste trabalho é demonstrar a
viabilidade de um SMA agregar serviços distribuídos pela
internet visando oferecer uma ferramenta de busca e
contratação centralizada que englobe vários serviços.

II. DEFINIÇÃO DO ESCOPO DO SMA
A partir da motivação apresentada, foram implementados

no SMA agentes para representar os serviços de Hotelaria, os
serviços de locação de automóveis e agentes intermediadores
de negociação.

Fig. 1. : Escopo do SMA.

O escopo deste trabalho foi definido como ilustrado na
Figura 1. Um Agente de Viagens interage com um agente
Gestor de Hotel para encontrar agentes hotéis, e com um
agente Gestor de Locadora de Automóveis para encontrar
agentes locadoras de Automóveis.

Multiagent systems to search and contracting Tourism services

53

Cada um dos elementos presentes na Figura 1 é
implementado na prática por um agente. Dessa forma, temos:
1 agente de viagens, 1 agente gestor de Hotéis, 1 agente gestor
de locadoras, n agentes de hotéis e n agentes de locadoras de
automóveis.

O cliente faz algumas escolhas quanto ao serviço. Com
base nessas escolhas, o agente classifica o tipo de Hotel e o
tipo de automóvel. Depois dessa classificação, o agente de
viagens requisita ajuda a outros dois agentes (Gestor de Hotel
e Gestor de Locadora de Automóveis) para realizar buscas por
hotéis e automóveis segundo as escolhas feitas pelo cliente.

Por fim, será apresentado ao cliente um pacote contendo: a
reserva de hospedagem em um hotel e uma locadora com
automóvel reservado.

III. CONSIDERAÇÕES SOBRE A ESCOLHA DAS
FERRAMENTAS DE IMPLEMENTAÇÃO DOS AGENTES

A plataforma JADE (Java Agent Development
Framework) foi escolhida como base do SMA e grande parte
dos agentes que compõe o SMA foi implementado usando
esse middleware. Segundo Bellifemine, et al. [3], Jade é um
middleware que facilita o desenvolvimento de SMA’s e já
vem sendo usado com sucesso em aplicações de diversos
setores como gestão de cadeia de suprimentos, gestão de
frotas, leilões e turismo.

Algumas características levaram à opção pelo uso do
JADE, principalmente o total suporte ao padrão FIPA
(Foundation for Intelligent Physical Agents) para a
comunicação entre os agentes [3]. O uso desse padrão de
comunicação permitiu que, em um segundo momento, os
agentes JADE pudessem conversar com os agentes Jason (A
Java-based AgentSpeak Interpreter Used with Saci For Multi-
Agent Distribution Over the Net) [4] utilizando o JADE como
plataforma de comunicação. Outro fator que levou à adoção da
plataforma JADE no projeto foi o fato dele ser implementado
na linguagem de programação Java. O middleware foi
desenvolvido para prover um conjunto de API’s que são
independentes do tipo de rede e da versão de Java utilizada.
Dessa forma, o SMA pode ser facilmente estendido no futuro
e ter agentes rodando a partir de dispositivos móveis como
celulares que suportem a plataforma Java.

Além do JADE, parte do sistema foi desenvolvido usando
Jason. A motivação para o uso do interpretador Jason foi
poder utilizar agentes cognitivos baseados na arquitetura BDI
(Belief, Desires and Intentions) [5]. Diferentes dos agentes
JADE, que são reativos, os agentes Jason possuem crenças,
objetivos, planos e intenções, sendo a programação realizada
na linguagem AgentSpeak, e a comunicação entre agentes
baseada na teoria de atos de fala[6]. Em agentes Jason os
planos executados e as crenças podem mudar dinamicamente
conforme os agentes vão interagindo no SMA. Dessa forma,
um agente que esteja participando de uma negociação pode
facilmente mudar de estratégia, desde que suas crenças sejam
alteradas. Apesar dos agentes Jason apresentarem uma
arquitetura mais rica que os agentes JADE, no presente
trabalho eles só foram utilizados para negociação do tipo
Contract NET, onde cada agente Jason representava uma
locadora de automóveis. No presente artigo só integramos

agentes com arquiteturas diferentes em um mesmo SMA. As
características de agentes BDI podem ser melhor exploradas
em um futuro trabalho.

IV. DESENVOLVIMENTO DO SMA
Atualmente existe um grande número de metodologias na

área de Sistemas Multiagentes. Segundo Akbari [7], de 1990
até 2010 foram desenvolvidas cerca de 75 metodologias
diferentes. A metodologia selecionada para a modelagem do
sistema foi a metodologia "Tropos", em razão da mesma estar
bem documentada e apresentar ferramentas computacionais
de apoio na plataforma em que o SMA estava sendo
desenvolvido.

Tropos é uma metodologia de desenvolvimento de
software orientada a agentes. Foi originalmente desenvolvida
na Universidade de Toronto, no Canadá. Tropos tem como
foco principal a análise de requisitos e adota o paradigma i*
Mylopoulos, et al. [8] como base. O i* oferece conceitos como
atores, objetivos e dependências destinadas para modelar as
estruturas sociais e descrever relações entre eles. A
metodologia Tropos é dividida em 5 fases de
desenvolvimento: (1) requisitos iniciais; (2) requisitos finais;
(3) projeto arquitetural; (4) projeto detalhado e (5)
implementação.

A. Requisitos iniciais do SMA
Utilizando o escopo definido, podemos identificar as

partes interessadas, suas intenções (goals) e seus
relacionamentos. Além dos agentes especificados no escopo,
foi criado um novo agente categorizador de hotéis. A tarefa
desse agente é receber as características escolhidas pelos
clientes e, a partir dessas características, ranquear o hotel em
uma categoria: 3, 4 ou 5 estrelas.

Após definidos os interessados e suas intenções, uma nova
análise foi realizada para identificar quais planos os atores
deverão realizar para atingir suas intenções. Também foram
identificados os relacionamentos entre os atores para a
realização dos planos.

Utilizando a ferramenta TAOM4E [9] , as intenções foram
transcritas como metas ou meta-soft. Temos ainda, a partir da
análise inicial, os planos e as dependências entre os atores,
além dos recursos identificados que foram gerados por eles.

Fig. 2. Diagrama de metas do ator viajante.

Santanna Filho, Costa, Brito da Costa, Szymanski, Hornburg

54

Depois de feita a modelagem do Diagrama de Atores, foi
modelado o Diagrama de Metas. Essa tarefa consiste em
verificar a possibilidade de decompor cada meta que um ator
possui em sub-metas, podendo surgir novas metas e novos
planos. Depois foi realizada a análise meio-fim, definindo
quais planos são os meios para alcançar as metas. A Figura 2
apresenta o diagrama de metas do ator viajante.

B. Requisitos Finais do SMA
O primeiro passo nessa fase foi inserir um ator que

representa a interface com o usuário. Esse ator foi denominado
SAV (Sistema de Apoio a Viagens). Depois realizou-se uma
nova análise em relação as intenções, planos e
relacionamentos, incluindo esse ator. O resultado pode ser
conferido na Tabela 1.

TABELA I. INTENÇÕES, PLANOS E RELACIONAMENTO ENTRE ATORES

Ator Intenções
(goals)

Plano Relacionamentos

Viajante - Comprar
pacote de
viagem
- Obter o
melhor Pacote
de viagem

- Escolher serviço
que deseja no
hotel
- Escolher tipo de
carro que deseja

SAV

SAV - Vender pacote
de viagem
- Categorizar
Hotel
- Interagir com
Viajante

- Requisitar
reserva de hotel
- Requisitar
locação de
automóvel
- Analisar serviços
escolhidos para
categorizar hotéis

- Gestor Hotel
- Gestor Locadora
- Viajante

Gestor
Hotel

Fechar negócio
com Hotel

Negociar reserva Hotéis

Gestor
Locadora
de
Automóveis

Fechar negócio
com Locadora

Negociar locação Locadoras

Hotel - Obter hóspede
- Fornecer
serviços

Barganhar
proposta

Gestor Hotel

Locadora
de
Automóveis

Obter Locatário - Registrar
serviços
- Informar valor

Gestor Locadora

A partir da Tabela 1 foi possível gerar o Diagrama de
Atores da fase de Requisitos Finais e, em seguida, realizar a
modelagem do diagrama de metas para o ator SAV.

C. Projeto Arquitetural
Segundo Silva [10], existem um conjunto de estilos

arquiteturais já definidos para SMA’s. Nesse projeto,
identificamos que parte da estrutura é Flat e parte é
Hierárquica.

Analisando o diagrama de metas do ator SAV,
identificamos cinco papéis. Cada papel foi especificado
segundo seus objetivos, responsabilidades, colaboradores,
habilidades e normas, que são representadas na Tabela 2.

TABELA 2. ESPECIFICAÇÃO DE PAPÉIS

A
ge

nt
e

de
 v

ia
ge

m

Objetivos: Montar pacote de viagens
Responsabilidades: Procurar Gestor de hotel e gestor de

locadora, Categorizar Hotel, Requisitar
reserva em Hotel e locação de Automóvel,
Publicar pacote montado.

Colaboradores: Gerenciador de Hotéis e Gerenciador de
Locadoras

Habilidades: Conhecer os Hotéis selecionados pelo
viajante

Normas: Acessar a base de serviços

G
es

to
r

de
 H

ot
éi

s

Objetivos: Negociar reserva em um Hotel
Responsabilidades: Procurar Hotéis de uma categoria específica

em uma lista, Enviar mensagem
requisitando preço para Hotéis, Selecionar
melhor oferta.

Colaboradores: Hotéis e Gerenciador de Viagens (SAV)
Habilidades: Conhecer a categoria do hotel procurado e as

propostas do hotéis envolvidos na
negociação

Normas: Acessar a base de serviços

G
es

to
r

de

L
oc

ad
or

as

Objetivos: Negociar locação de automóvel
Responsabilidades: Enviar mensagens para locadoras de

automóveis, Selecionar melhor oferta.
Colaboradores: Locadoras de automóveis e Gerenciador de

viagens (SAV)
Habilidades: Realizar a Contract Net com as locadoras

encontradas
Normas: Acessar a lista de locadoras disponíveis

H
ot

el

Objetivos: Vender a reserva em Hotel
Responsabilidades: Responder mensagem com valor

Colaboradores: Gerenciador de Hotéis
Habilidades: Conhecer ou descobrir sua categoria

Normas: Conhecer sua categoria. Caso contrário, deve
acessar uma ontologia para descobrir em que

categoria se encaixa.

L
oc

ad
or

a

Objetivos: Alugar Automóvel
Responsabilidades: Se registrar junto a Gerenciador de

Locadoras, Responder mensagem com valor
do respectivo automóvel.

Colaboradores: Gerenciador de Locadoras
Habilidades: Conhecer o tipo de carro desejado

Normas: Acesso ao tipo de carro desejado

Fig. 3. Diagrama Arquitetural do Sistema.

Na Figura 3 é apresentado o Diagrama Arquitetural do
sistema, resultante do mapeamento em conformidade com o
estilo arquitetural escolhido.

Finalizou-se a fase de Projeto Arquitetural com a
elaboração do diagrama arquitetural e a definição dos papéis.

Multiagent systems to search and contracting Tourism services

55

D. Projeto Detalhado
Nessa fase foi descrita a estrutura interna de cada papel e

detalhes de projeto.

Analisando o diagrama de metas do ator SAV (Figura 3),
identificamos cinco papéis. Cada papel foi especificado
segundo seus objetivos, responsabilidades, colaboradores,
habilidades e normas, que são representadas na Tabela 2.

1) Funcionamento do protocolo de Barganha (Gestor Hotel X
Hotel)

O protocolo de negociação implementado funciona
utilizando barganha em 4 rodadas de negociação. No primeiro
round o agente Gestor de Hotéis recebe uma requisição para
buscar por um hotel com determinada categoria (3, 4 ou 5
estrelas). Baseado nessa requisição, o gestor consulta o serviço
de páginas amarelas e recebe uma lista com agentes que
representam os hotéis da categoria procurada. Usando a lista, o
agente gestor envia pedidos para todos os hotéis utilizando a
performativa request com o seguinte conteúdo na mensagem
(1, 2 ,0). O 1 informa aos agentes que eles estão participando
do protocolo de barganha e que estão na primeira rodada de
negociação. O 2 representa que a busca é para quartos da 2ª
semana do ano. No projeto do protocolo definimos o segundo
campo como uma informação de data, mas essa informação
não foi utilizada para tomada de decisão. Se assumiu que na
data escolhida todos os Hotéis terão vaga. O 0 (zero) da
mensagem é o campo que indica a melhor oferta atual. Como
os agentes ainda não ofertaram preços, se envia preço 0 como
indicador da primeira rodada. Os agentes recebem essa
mensagem e, de acordo com suas próprias estratégias, ofertam
um valor para o serviço.

Na segunda rodada o agente gestor processa as ofertas que
chegam e decide como melhor preço a menor oferta enviada
pelos agentes. A seguir o gestor envia uma mensagem com
performativa inform com o seguinte conteúdo (2, 2, melhor
Preço). Como no primeiro envio, o primeiro campo de valor 2
representa que estamos na 2º rodada de barganha, o segundo 2
continua representando a semana de locação do quarto, e o
último campo carrega o melhor preço escolhido do conjunto
de preços da rodada anterior. Genericamente podemos
descrever que o conteúdo das mensagens segue o seguinte
formato: (n,x,y), sendo: n (número da rodada), x (campo de
data para reserva do quarto) e y (menor preço da última
rodada de negociação).

O processo continua até a 4ª rodada. Na rodada final o
agente gestor finaliza a negociação enviando uma mensagem
com a performativa Accept Proposal para o agente do hotel
vencedor que deve, nesse momento, reservar o quarto. O
restante dos hotéis não recebe mensagem nenhuma e, como o
sistema foi projetado para que os agentes dos hotéis não
reservem quartos antes da 4ª rodada, não ocorre prejuízo para
os hotéis perdedores.

 Os agentes do SMA relacionados a hotéis foram todos
feitos usando a plataforma JADE[11]. O agente Gestor de
Hotéis foi projetado para controlar o protocolo de barganha
utilizando um Tick Behaviour temporizado para 6 segundos.
Nesse meio tempo existe um Cyclic Behaviour que atualiza a
lista de hotéis continuamente. O agente gestor envia

mensagens para esse conjunto atualizado de agentes. Dessa
forma, o protocolo permite que um hotel que não participou na
1ª rodada possa participar da 2ª rodada ou da 3ª. Outra escolha
de projeto foi que os agentes hotéis não respondam quando
não puderem ofertar um preço melhor que o barganhado. Isso
foi feito para diminuir a quantidade de mensagens circulando
na rede.

2) Estratégia dos Agentes Hotéis

Como escolha de projeto desenhamos três agentes com
estratégias distintas para participar da barganha de preços.
Para essas três classes de agentes com comportamentos
distintos foram projetadas mais três classes dessas para cada
categoria de hotel (3, 4 e 5 estrelas) com diferentes preços do
serviço segundo a categoria dos hotéis . Os três tipos de hotéis
são os seguintes:

§ Hotel Escada: Oferta 3 preços fixos, um para cada rodada
sem variar.

§ Hotel Turco: Oferta um preço randômico próximo ao
primeiro preço do hotel escada e, a partir daí, nas outras
rodadas, sempre que receber do agente Gestor de Hotéis
um preço, diminui em R$ 1 (um real, moeda brasileira) a
melhor oferta e envia essa oferta ao gestor.

§ Hotel Randômico: Como o turco, sua primeira oferta é
gerada por um número randômico próximo ao do hotel
escada. A partir daí, nas próximas rodadas ele recebe o
melhor preço, gera um número randômico e diminui do
melhor preço e faz sua oferta com o resultado.

A partir desses hotéis são criados tipos específicos para
cada categoria. Cada um desses hotéis com seu próprio agente.
Dessa forma temos: Hotel Escada 3, 4 e 5 estrelas; Hotel
Turco 3, 4 e 5 estrelas; Hotel Randômico 3, 4 e 5 estrelas. A
única alteração feita entre esses hotéis é a precificação do
serviço em cada round.

3) Uso de ontologias para um Hotel que não sabe a que
classe pertence

Foi propositadamente desenvolvido no SMA um agente
Hotel que não tem conhecimento da sua categoria e utiliza a
ontologia criada para descobrir em que categoria se encaixa.
Esse agente foi criado prevendo a participação de
estabelecimentos não classificados previamente, mas que
poderiam participar da negociação. Dessa forma, foi definida
uma ontologia para representar os atributos de um hotel. Esta
ontologia define as classes Service, Hotel e Room. A classe
Service possui como subclasses os serviços que um hotel pode
oferecer. A classe Hotel possui como subclasses as categorias
de hotéis (“estrelagem”). A classe Room define o quarto de um
hotel.

Utilizando a ferramenta Protégé[12], temos a hierarquia
completa de todas as classes. Foram definidas algumas
propriedades para cada classe, tais como: hasRoom,
isRoomOf, hasService e isServiceOf. A propriedade hasRoom
possui como domínio a classe Hotel e como range a classe
Room. A propriedade isRoomOf é a inversa de hasRoom. A
propriedade hasService também possui como domínio a
classe Hotel, e possui como range a classe Service. Já
isServiceOf é a propriedade inversa de hasService. Além

Santanna Filho, Costa, Brito da Costa, Szymanski, Hornburg

56

disso, as subclasses de Hotel possuem restrições (superclasses
anônimas), na forma de hasService some xxx, que associam
cada categoria de hotel aos serviços que eles oferecem.

O agente hotel que utiliza a ontologia inicializa
aleatoriamente uma lista de serviços, simulando um hotel não
ranqueado tentando participar da negociação. A seguir, o
agente carrega a ontologia e a partir da sua lista de serviços
realiza um reasoning para determinar qual é a sua categoria
(3Star, 4Star ou 5Star). O agente também pode concluir que o
conjunto de serviços por ele ofertados não atendem os
requisitos de nenhuma das categorias. Se o agente se enquadra
em alguma categoria, ele se registra nas páginas amarelas para
aquela categoria, caso contrário, ele não se registra e não
participa de negociações, sua estratégia de negociação é igual
à do Hotel Escada.

4) Sistema Especialista

Um sistema especialista embutido no agente que interage
com usuário (SAV) foi desenvolvido utilizando a ferramenta
Jess [13] para fazer a classificação do tipo de hotel que o
usuário deseja a partir dos serviços escolhidos. Dessa forma, o
agente pode requisitar ao Gestor de Hotéis um hotel com uma
classificação com relação às estrelas (3, 4 ou 5 estrelas).

Para definir os requisitos básicos de cada categoria de
hotel, foram utilizadas informações do Sistema Brasileiro de
Classificação de Meios de Hospedagem [14] A partir dessa
classificação, selecionamos alguns serviços que hotéis devem
possuir para obter determinada classificação.

Para inserir como um fato os serviços básicos de cada
hotel no sistema especialista, foi usada a palavra-chave
deffacts, que insere os fatos quando é dado um (reset) no
programa, conforme mostra o código exemplo a seguir:

(deffacts hoteis)
(hotel3 Internet Frigobar Estacionamento Cafe)
(hotel4 Internet Frigobar Estacionamento Cafe

CafeQuarto ServicoQuarto Manobrista)
(hotel5 Internet Frigobar Estacionamento Cafe

CafeQuarto ServicoQuarto Manobrista SalaoEventos
Banheira Concierge)

 O sistema de viagem executa o sistema especialista
acrescentando um fato tipo lista com cabeçalho “serviços”com
os serviços solicitados pelo usuário. Por exemplo, se um
usuário solicitou Banheira e Internet, o Sistema de Viagem
acrescentaria o seguinte fato no SE: (serviços Banheira
Internet).

5) Funcionamento do agente gestor de locadora de
Automóveis

Utilizando o Jason, foi criado um agente BDI do tipo
Gestor que utiliza uma Rede de Contrato (Contract Net) como
suporte para a coordenação da negociação, que tem como
estratégia escolher a empresa que oferece a menor diária para
o carro solicitado pelo cliente.

Como crença inicial, o agente tem que todas as respostas
foram recebidas se o número de participantes for igual ao
número de propostas somado ao número de recusas. O agente
Gestor de Locadora possui como objetivo inicial se registrar

nas páginas amarelas, para que o sistema de viagem possa
encontrá-lo. Para atingir esse objetivo, ele tem um plano que
chama uma ação interna “jadedf.register”, que o registra como
provedor de serviços do tipo “locação-carros” e com o nome
“Gestor-LocadoraCarros”. Existe um segundo plano para o
caso de ter sido adicionado à sua base de crenças o
recebimento de uma mensagem KQML do tipo CFP (Call for
Proposal). Nesse plano é armazenado como uma crença o
remetente da mensagem (agente que solicitou um carro) e
então é adicionado um novo objetivo, o de iniciar a rede de
contrato (“!iniciaContractNet”).

Para atingir o objetivo de iniciar a rede de contrato, existe
um plano de esperar 2 segundos para os participantes se
registrarem, guardar o estado da RdC (rede de contrato) como
fase de “proposta”, procurar por todos os participantes que se
registraram e enviar para cada um deles um pedido de
proposta para o carro solicitado na CFP recebida. Em seguida
ele espera mais 4 segundos e adiciona o plano de “contratar”.
Enquanto isso, o agente gestor recebe as propostas e recusas
dos participantes. Quando todas as propostas foram recebidas,
ele adiciona o objetivo de “contratar”.

O plano para contratar é executado somente se o estado da
RdC atual é “proposta”. Ele consiste de alterar o estado da
RdC de “proposta” para “contratar”, encontrar todas as ofertas
dos participantes, calcular o menor valor de oferta e então
determinar o ofertante desse valor como Agente Vencedor.
Então, ele adiciona como novo objetivo anunciar o resultado
(avisa ao agente vencedor que ele ganhou e aos outros que a
proposta foi recusada) e envia para o remetente a empresa de
locação que venceu a RdC, juntamente com sua oferta
vencedora. O estado da RdC é alterado para “terminado” e a
crença das propostas recebidas e da mensagem KQML
daquele remetente são apagadas.

6) Funcionamento dos agentes Locadoras de Automóveis

As locadoras de automóveis foram implementadas como
agentes Jason. Foram criados 4 agentes locadoras para fins de
simulação, cada um com estoque de carros diferente. Os
agentes possuem como crenças iniciais os carros com os quais
ele trabalha ou não trabalha, e um preço randômico para
ofertar. Os agentes possuem um plano inicial de enviar uma
mensagem para o Gestor de Locadora, se registrando para
participar das RdC gerenciadas por ele.

Caso um agente tenha uma crença de uma CFP vinda do
Gestor solicitando um carro, e ele tenha um carro da categoria
disponível no estoque. O agente executa o plano de responder
à essa CFP, que reserva um carro do tipo solicitado, adiciona
uma crença com a proposta feita e envia a proposta para o
Gestor. Se o agente receber uma crença do tipo “aceitar
proposta” do Gestor de Locadora, significa que o Gestor está
avisando que ele ganhou a RdC. Então ele mantém a reserva
do carro para o cliente e apaga as crenças com relação àquela
RdC, finalizando a contratação. Caso o agente tenha perdido
uma RdC, ele receberá uma crença “recusa proposta” do
Gestor de Locadora. Então o agente executará o plano de
atualizar o estoque, reinserindo o carro que havia sido
reservado, e apagará as crenças com relação àquela RdC.

Multiagent systems to search and contracting Tourism services

57

Finalmente, caso o agente não trabalhe com o carro
solicitado ou o carro tenha acabado no estoque, é executado
um segundo plano onde o agente envia uma mensagem de
recusa para o Gestor, informando que ele não participará da
RdC

E. Implementação
O SMA foi implementado na plataforma JADE. Os

agentes Gestor de Locadora de Automóveis e Locadora de
Automóveis são agentes BDI feitos em Jason. O Gestor de
Hotéis e os Hotéis são agentes reativos feitos em Java na
plataforma JADE.

O agente SAV foi codificado em Java/JADE [11].
Embutido nesse agente, temos um sistema especialista feito
em Jess [15] (anteriormente mencionado) para classificar os
hotéis segundo escolhas do cliente.

Fig. 4. Solicitação ao SMA de Hotel e Carro econômico com Ar
condicionado

Adicionalmente foi implementado uma GUI (Graphical
User Interface) usando Java/Swing para servir de interface
com o usuário (Figura 4). Essa interface captura os serviços do
hotel que o usuário necessita, bem como o tipo de carro, e
passa essa lista para o “Agente de Viagens”, que por sua vez
inicia todo o processo de busca no SMA.

V. CONSIDERAÇÕES FINAIS
O potencial de um Sistema Multiagentes vai muito além do

que foi apresentado nesse trabalho. SMA’s representam um
novo paradigma na área de desenvolvimento de software para
construção de sistemas distribuídos e na integração de
sistemas. O SMA desenvolvido nesse artigo demonstra que tal
tecnologia pode ser uma alternativa viável para a construção
de uma ferramenta para atender ao cenário proposto.

Por praticidade, os agentes do SMA foram implementados
de forma semelhante. Em um sistema real, cada empresa
poderia implementar seu(s) agente(s) de acordo com o seu
modelo e políticas de negócio, usando diversos protocolos de
negociação em um mesmo agente. Dessa forma, um agente
poderia participar simultaneamente em negociações do tipo
barganha, Contract Net e leilão, bastando que fosse
programado para isso. Nesse caso seria essencial o seguinte:
os agentes intermediários (Intermediários na negociação entre
o cliente e os prestadores de serviço), aqui representados pelos

agentes Gestor de Hotel e Gestor de Locadora, teriam que
informar que tipo de protocolo de negociação está sendo
utilizado antes de iniciar a negociação propriamente dita.
Além disso, tais protocolos teriam que ser padronizados e de
conhecimento dos demais agentes. Dessa forma, um agente
poderia participar de vários tipos de negociações diferentes,
desde que utilizasse os protocolos padronizados.

 Para os agentes intermediários também é valido o uso
de vários protocolos de negociação. Tais agentes poderiam ser
implementados pelas Secretarias de Turismo locais. Um
agente desse tipo poderia mudar de protocolo de negociação
segundo a demanda por determinado serviço, como por
exemplo, utilizar um protocolo que maximize o lucro em
época de maior demanda pelo serviço.

 Diferente da implementação do SMA apresentada
nesse artigo, um único agente intermediário poderia lidar com
vários tipos de serviços diferentes, como por exemplo, um
mesmo agente intermediário servir para negociações com
hotéis, bares e restaurantes, etc. Dessa maneira é possível
perceber que a tecnologia de SMA’s pode ser utilizada para a
construção de SMA’s muito mais complexos que o
demonstrado no artigo. Porém, deve-se sempre levar em conta
que um agente intermediário lida com dezenas de agentes
simultaneamente e o fator escala sempre deve ser levado em
conta para não sobrecarregar a infraestrutura de comunicação
e a capacidade de processamento do agente.

 Outra característica importante desse tipo de sistema
é que a complexidade de um SMA pode crescer, mas isso fica
transparente para os usuários. Um cliente procurando serviços
não precisa saber dos detalhes de implementação dos agentes
intermediários, basta que os agentes envolvidos utilizem
protocolos padrão de negociação e uma mesma ontologia de
serviços (mesma definição para nomes e detalhes dos
serviços). Essa transparência se estende ao longo do SMA,
uma vez que cada um dos atores (Secretaria de Turismo,
hotéis, restaurantes, locadoras de automóveis, bares, etc.) vai
cuidar da implementação do seu próprio agente sem precisar
conhecer os detalhes de funcionamento do restante dos
agentes do SMA.

 No SMA de exemplo, o sistema ficou centralizado
nos dois agentes intermediários (agente Gestor de Hotel e
agente Gestor de Locadora de Automóveis), mas não
necessariamente precisa ser dessa forma. Um SMA mais
completo poderia contar com diversos gestores diferentes
representando regiões distintas geograficamente. Dessa
maneira seria possível que um agente de busca mais
especializado procurasse por um conjunto de serviços e
informasse ao cliente em qual região/estado seria mais
vantajoso passar as férias. A plataforma JADE permite a
comunicação com diversos SMA’s distribuídos.

 Dentro do cenário proposto nesse artigo, as
Secretarias de Turismo poderiam fomentar a criação de um
catálogo eletrônico de serviços turísticos que abrangesse todos
seus associados. Dessa maneira, agentes poderiam integrar
seus serviços em um único/ou vários SMA’s de serviços
turísticos.

Santanna Filho, Costa, Brito da Costa, Szymanski, Hornburg

58

Sistemas mais sofisticados lidam com APIs e tecnologias
que abstraem máquinas de inferência, protocolos de interação
e estruturas de informações. Algumas delas foram utilizadas
nesse trabalho. Porém, tais ferramentas apresentam um
conjunto bem maior de funcionalidades habilitando SMA para
lidar com cenários bem mais complexos que o apresentado
aqui.

REFERENCES

[1] SEBRAE, "Copa 2014 - oportunidades e desafios,"

2011.
[2] E. S. d. S. Zagheni and M. M. M. Luna, "Canais de

distribuição do turismo e as tecnologias de
informação: um panorama da realidade nacional,"
Revista Produção Online, vol. 11, pp. 476-502, 2011.

[3] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa,
"Title," unpublished|.

[4] R. H. BORDINI, J. F. HUBNER, and M.
WOOLDRIDGE, Programming Multi-Agent Systems
in AgentSpeak using Jason. University of Liverpool,
UK, 2007.

[5] A. S. Rao and M. P. Georgeff, "An Abstract
Architecture for Rational Agents," in Principles of
knowledge representation and reasoning:
proceedings of the third international conference
(KR'92), 1992, p. 439.

[6] R. H. Bordini and R. Vieira, "Linguagens de
Programação Orientadas a Agentes: uma introdução
baseada em AgentSpeak (L)," Revista de informática
teórica e aplicada. Porto Alegre. Vol. 10, n. 1 (2003),
p. 7-38, 2003.

[7] O. Z. Akbari, "A survey of agent-oriented software
engineering paradigm: Towards its industrial
acceptance," J. Comput. Engg. Res, vol. 1, pp. 14-28,
2010.

[8] J. Mylopoulos, M. Kolp, and J. Castro, "UML for
agent-oriented software development: The Tropos
proposal," in ≪ UML≫ 2001—The Unified Modeling
Language. Modeling Languages, Concepts, and
Tools, ed: Springer, 2001, pp. 422-441.

[9] D. Bertolini, A. Novikau, A. Susi, and A. Perini,
"TAOM4E: an Eclipse ready tool for Agent-Oriented
Modeling. Issue on the development process,"
University of Trento, Trento, Italy, 2006.

[10] M. Silva, "U-TROPOS: uma proposta de processo
unificado para apoiar o desenvolvimento de software
orientado a agentes," Dissertação. Recife, 2008-
Universidade Federal de Pernambuco, 2008.

[11] F. Bellifemine, G. Caire, and T. Trucco, "Jade
Programmer’s Guide. Java Agent Development
Framework (2010)," ed.

[12] N. F. Noy, M. Crubézy, R. W. Fergerson, H.
Knublauch, S. W. Tu, J. Vendetti, et al., "Protege-
2000: an open-source ontology-development and
knowledge-acquisition environment," in AMIA Annu
Symp Proc, 2003, p. 953.

[13] E. Friedman-Hill, "Jess, the rule engine for the java
platform," ed, 2003.

[14] D. L. Candeia, "Classificação dos meios de
hospedagem," 2004.

[15] E. J. Friedman-Hill, "Jess, the java expert system
shell," Distributed Computing Systems, Sandia
National Laboratories, USA, 1997.

Multiagent systems to search and contracting Tourism services

59

A multiagent approach for detecting and mitigating
DDoS attacks

João P. A. Pereira, Marcos A. Simplicio Jr.,Anarosa A. F. Brandão
Dept. of Computer and Digital Systems Engineering

Escola Politecnica, Universidade de São Paulo (USP), São Paulo/SP 05508–010
Email: {raijoma,mjunior}@larc.usp.br, anarosa.brandao@poli.usp.br

Abstract—This paper describes Arquitena, a multiagent ap-
proach for detecting and mitigating DDoS attacks in Internet
Services Providers (ISP) networks. Arquitena’s main property
is to identify situations that characterize attack scenarios, such
as a large stream of packets directed to a network service or
equipment. This is accomplished by using a virtual network of
agents that mirrors the actual network infrastructure, which
tends to facilitate the detection of attack routes, identification of
malicious traffic and protection of hypothetical victims. Together
with the system’s description and rationale, we describe our
preliminary prototype that will be employed for its evaluation.

Keywords—multiagent systems; distributed denial of service
attacks; detection; mitigation; internet service providers.

I. INTRODUCTION

Modern society is increasingly dependent on the Internet
services, including the speed of the links and data availability.
Internet access by companies and final users is usually done
indirectly, through the infrastructure of an Internet Service
Provider (ISP) that charges for this service. This dependence
puts great responsibility upon the ISP, since any network
unavailability can seriously affect the transactions of many of
the ISP’s clients (e.g., causing financial and image losses). One
example of threat against network availability are the so-called
Distributed Denial of Service (DDoS). Albeit diverse in nature
(for a taxonomy, see [12]), such attacks usually involve a large
number of entities that, by directing a large volume of traffic to
a single target, compromise its capability of providing services
to legitimate users.

DDoS attacks are currently among the most serious threats
to the infrastructure of critical services from an ISP [1]. This is
especially troubling considering that they have been gradually
growing in number and volume in the last few decades [1].
In addition, among the many forms of DDoS techniques, very
few can be handled by the victim alone. Aiming to tackle this
issue, many detection and mitigating strategies against DDoS
attacks have been conceived. This includes strategies that try
to create a defense perimeter around the target [5] or rely on
statistical analyzes to detect DDoS attacks [11]. A more recent
technique to address this challenging scenario, however, is to
employ Multiagent Systems (MAS). The advantage of using
MAS is related to the difficulty of blocking DDoS attacks
without using a highly distributed mechanism that covers all
regions of the ISP’s network [10]. In this context, using MAS
becomes an interesting approach to deal with such problem,
since it naturally deals with intensely dynamic environments.

The goal of this study is, thus, to employ a multiagent

approach in the design of a system able to detect, mitigate
and block DDoS attacks. The agents’ intelligence allows them
to react to changes perceived in their surrounding environment,
such as a large stream of packets going to a same target (packet
flooding). The resulting MAS solution consists of a self-
coordinated group of agents that represent the ISP’s network
elements. These agents communicate among themselves and
also with the underlying equipment, detecting unusual network
patterns and acting accordingly. Among the characteristics
aimed by Arquitena, the most fundamental are its ability to:
(i) provide fast detection, (ii) identify most types of DDoS
attacks, (iii) provide service continuity for legitimate traffic,
(iv) achieve low false-positive and false-negative rates, and
(v) impose a low operation overhead. The system runs on a
simulation environment, called Delos, that is created according
to the real network topology of the target ISP.

The rest of this document is organized as follows. Section II
provides a brief overview of DDoS attacks. Section III presents
in details the Arquitena system and the Delos simulation en-
vironment. The performance metrics to be used in Arquitena’s
evaluation are covered in section IV. Section V discusses the
related work. Finally, section VI concludes the discussion and
suggest ideas for future work.

II. BACKGROUND: DDOS ATTACKS

A Distributed Denial of Service (DDoS) attack corresponds
to an attempt to compromise the availability of some ser-
vice, hindering or blocking completely its ability to handle
legitimate users’ requests [14, Chapter 7]. Specifically, such
attacks attempt to exhaust some critical resource upon which
the target service depends. For example, an attacker can use
many machines to direct a large amount of spurious requests
addressed to a specific target, effectively flooding the target’s
equipment (e.g., a server or an access router) with packets. The
target equipment, unable to handle so many requests in such a
short interval of time, may either collapse completely or start
dropping a large portion of the received packets. Whichever
the case, this affects the service provider’s ability to respond
to requests from legitimate users in a timely manner, thus
preventing most (or all) legitimate users from accessing the
service.

As shown in Figure 1, DDoS attacks are often accom-
plished by a large number of machines, which are recruited and
controlled by some malicious entity and work in synchroniza-
tion to attack a particular service or device. The participating
machines typically do not belong to the attacker him/herself,
but are controlled after its security is compromised (e.g., by

A multiagent approach for detecting and mitigating DDoS attacks

61

Fig. 1. A botnet-based DDoS attack. Thicker lines indicate a higher volume of traffic.

a virus or trojan horse), forming what is called a botnet [14,
Chapter 6]. The higher the number of machines involved in the
attack, the larger the traffic that reaches the target and, thus,
the higher the chances of collapsing the service.

Preventing DDoS attacks is a challenging task, especially
because it is difficult to differentiate legitimate from malicious
packet flows. After all, in both cases the packets carry the
IP address of the victim as their destination and they are all
directed to a valid service; especially in the case of botnets,
they also carry a valid IP as their source address. The main
difference is, thus, in the number of packets in each flow, as
an attacker is bound to send a huge amount of traffic to the
victim in a short period of time.

Even if one is able to identify malicious packets, blocking
their source while preserving legitimate traffic (e.g., by means
of authentication policies, packet filtering and application of
firewalls) remains a challenging issue. This happens because
a malicious packet flow can only be effectively blocked if this
is done near its point of origin, where the volume of traffic
is still small enough to be handled with small impact over
other (legitimate) packets. Otherwise, any piece of equipment
trying to block the traffic would have to deal with the large
amount of traffic that accumulate in the links near the intended
victim, becoming itself vulnerable to a service failure due to
excessive processing. Therefore, it is necessary to determine
the path of malicious packet from the network’s edge to the
possible victim (the so-called “attack route”), applying filtering
mechanisms on the relevant network equipment in a dynamic
manner. Addressing this issue in a efficient manner is the main
goal of this article, which proposes an intelligent orchestration
mechanism that relies on holistic and updated information
about the state of the network for preventing malicious packets
from reaching their target.

III. A MAS FOR DETECTING, MITIGATING AND
BLOCKING DDOS ATTACKS: ARQUITENA

Arquitena is our proposal for dealing with DDoS attacks
using a MAS approach. The underlying idea is to benefit from
cooperation and coordination among Arquitena agents to mon-
itor an ISP network, detect DDoS attacks, and mitigate such
attacks by blocking the attackers. In order to do that, Arquitena
adopts two basic types of agents, the external agent and the
internal agent, whose instances run in a virtual environment
(called Delos) that simulates the underlying network topology.
In this section we describe the Arquitena agents, the way they
interact and the environment where such interactions occur.

A. Arquitena agents

As already said, an Arquitena agent can be of one of
two types: an external agent or an internal agent. The choice
for their names is related to their position inside the ISP’s
network. The external agent has knowledge about the network
topology and available resources, such as routers, firewalls,
servers and load balancers, and is responsible for provid-
ing traffic information related to different pieces of network
equipment to internal agents. Internal agents are responsible
for monitoring network equipment while dealing with traffic
information received from external agents. Such monitoring is
what provides internal agents with the knowledge required for
detecting and mitigating DDoS attacks. In addition, internal
agents are further specialized into Minos, Adamantos and
Eacos agents (see figure 2).

Minos agents are responsible for monitoring and pro-
tecting potential victims, i.e., equipment whose IP addresses
are enclosed within the packets sent by attackers. Common
examples are servers hosting services such as Web or DNS
(Domain Name System), being connected to the wider Internet
by the ISP. Adamantos agents are responsible for monitoring
and protecting critical equipment at the network’s core and
also the network’s entry points at the edge of the ISP’s
network. A piece of equipment is considered critical if it is

Pereira,J., Simpĺıcio Jr and Brandão

62

usually responsible for large volumes of traffic (e.g., because
it is located at a point of confluence), meaning that (1) it
concentrates a lot of information about the network conditions
and (2) applying filters to it can considerably reduce the
traffic load at the victim. The importance of the network’s
entry points, on the other hand, comes from the fact that
they are expected to become the final and long-living location
of the filtering mechanisms applied by Arquitena. Although
critical equipment at the network core might also be considered
potential victims, Minos agents differ from Adamantos agents
because the latter are also responsible for building attack
routes and applying filtering mechanisms whenever necessary.
Finally, Eacos agent behave similarly to Adamantos agents,
but are responsible for less critical equipment at the network’s
core and, for this reason, are designed to be inactive most of
the time. This “sleeping behavior” is part of an strategy to
avoid communication and processing overhead while ensuring
detection efficiency.

Fig. 2. Arquitena Agents

B. Interaction within Arquitena

Interaction between Arquitena agents provides coordination
and learning within the system. External agents communicate
with everyone in the system. They send information related
to the network traffic to internal agents in order to update
their knowledge about it. Therefore, internal agents learn
about legitimate and malicious traffic based on information
received from external agents, identifying high volumes of
traffic addressed to a same target. Also, active internal agents
periodically request such information from external agents,
characterizing a two-way communication channel.

The language of communication employed is the Knowl-
edge Query and Manipulation Language (KQML) [6], while
the Arquitena system itself is developmed using Jason [3]
and Java. The interoperability of the system with the (non-
Jason) external agent can be resolved by developing an Internal
Action with Java and Jason as well. This allows the creation
of a wrapper for encapsulating the external agent, enabling it
to communicate via KQML.

The learning algorithm adopted in Arquitena is the Random
Forest [4], which operates by constructing a large number of
decision trees and provides outputs generated by individual
trees. This algorithm does not require data normalization,
allows lots of data to be analyzed with little computational re-
sources and enable model validation through statistical tests. Its
application in the system should allow agents them to learn the
average rate of packets (FPav) that nornally pass through the

monitored equipment. In this manner, the Arquitena system can
be considered truly intelligent, since its agents contantly learn
about the traffic characteristics and this knowledge becomes
mote accurate with time. The decision and learning models
applied are consistent with the characteristics of each agent,
which stores data and predict suitable actions.

Interaction between internal agents occur in two ways: (i)
Minos agents interact with every internal agent, since it must
inform the IP address of the equipment under its responsibility;
and (ii) other internal agents interact with their neighbors.
Since each internal agent is responsible for a specific equip-
ment, internal agents A and B are said to be neighbors if there
is a direct network link connecting the two pieces of equipment
monitored by them. Such interaction provide neighbors with
information related to their location and, more importantly,
their current traffic flow. In addition to such information, Eacos
agents must be activated whenever one of their neighbors
perceive any possibility of malicious traffic flow coming from
its neighborhood.

Coordination is also achieved based in the information
exchanged during interaction among agents. In special, each
internal agent periodically queries the external agents for traffic
statistics corresponding the equipment being monitored by it.
This allows internal agents to update the value of a threshold
for each potential victim, accommodating natural changes on
network traffic, and also to detect when the threshold is
exceeded. If that happens often enough, this may indicate
a DDoS attack and, thus, internal agents activates all Eacos
agents in their neighborhood. Eacos agents activated in this
manner may fall back to the inactive state if there is not
enough traffic passing by the equipment monitored by it, or
may activate other neighboring agents in a chain reaction.
Eventually, Adamantos agents near attackers are triggered at
the network’s edge, meaning that the attack route is complete
and, hence, the DDoS attack is fully detected.

Simultaneously to the above detection process, the agents
also cooperatively follow specific plans aiming to prevent an
excessive amount of traffic from reaching the victim during
the attack, thus avoiding the disruption of that equipment’s
service. This is accomplished by having the agents configure
(temporary) filtering mechanisms in the monitored equipments,
blocking network traffic directed to the victim, something that
could not be easily done manually. As these filters move to-
ward the edge of the network where the attackers actually are,
the legitimate traffic becomes less and less affected. As a final
remark, we notice that the system must be manually initialized
with some basic information that cannot be learned otherwise.
This includes the maximum flow of packets (FPmax) that
each device can support, a security parameter that depends
on the specific equipment being protected. Another example
is the position of the agents, the connections between them and
the target equipment each of them monitor, which depend on
the actual layout of the network where the Arquitena system
is deployed and which are the nodes that need protection.
Since this layout is not expected to change often, in principle
Arquitena does not need to include mechanisms to deal with
the dynamic entrance and exit of agents. Therefore, the agents
are placed in fixed and permanent positions. Nonetheless,
Arquitena shows some dynamism in the sense that any active
internal agent may, depending on the state of the environment,

A multiagent approach for detecting and mitigating DDoS attacks

63

Fig. 3. Arquitena system and agents

enable Eacos agents during the system’s mitigation process.

C. The Delos environment

Although Arquitena could in principle be implemented in
a completely distributed manner, the platform being used for
implementing the system is a centralized hardware (disk, CPU
and memory) where all agents are executed. This facilitates the
communication between agents and, at the same time, does not
require modifications on the existing network equipment being
monitored.

The network itself is simulated using a simulation en-
vironment, called Delos, which handles the agents’ requests
and message exchanges, as well as the dynamic changes in
their surroundings. Delos implements a grid that maps the ISP
topology and, thus, must be configured using information from
the position of the network elements and their interconnections.
Aiming to facilitate interpretation by humans, Delos provides
a visual interface with a color system that identifies different
network elements and their current status (see Figure 4):
green for inactive agents (equipment not being monitored);
blue for active agents monitoring a piece of equipment under
normal traffic; red for active agents monitoring equipment with
anomalous traffic; gray for active agents monitoring equipment
that have an active access control list applied to them due to
anomalous traffic.

In its current state, Delos is still a quite simple proto-
type that allows for communication between agents and a
few types of network equipment. Its final implementation,
however, should give support to the following components,
some of which are depicted in Figure 4: (i) routers (oval
form); (ii) firewalls (hexagon form); (iii) servers (diamond
form); (iv) load balancers (triangle form); (v) Minos, Eacos
and Adamantos agents associated with these objects. Network
elements that have no connections with their neighbors in the
grid are separated by black squares (empty cells in a grid).

Fig. 4. Simulation Environment: Delos

Like Arquitena, Delos is developed using Jason [3] and
Java.

IV. ANALYSIS

The main functional requirements of the Arquitena system
are: (1) the ability to accurately detect a situation of DDoS
attack; (2) mitigate the attack after its detection, blocking
enough malicious traffic flow along the network so that the
amount of malicious packets reaching the target are not enough
to compromise its service; and (3) preserve as much as possible
the legitimate network traffic, whether or not it is directed to
the victim of the DDoS attack.

Pereira,J., Simpĺıcio Jr and Brandão

64

These requirements are expected to be fulfilled as a direct
consequence of the sparse distribution of agents monitoring
the environment in a ubiquitous manner, covering diverse
choices of agents and victims. As the agents learn the traffic
distribution and normal thresholds of the protected network,
they can notice abnormal behavior caused by different types of
DDoS attacks. When that happens, they can act accordingly,
building attack routes and placing barriers for the malicious
traffic on the relevant network elements. Furthermore, the fact
that the system allows some agents to remain inactive enables
the network administrator to balance the solution’s usage of
computational resources, such as CPU time and memory.

It is important to notice that, as any general purpose
solution that independs on the protocols employed by the
attacker, Arquitena is unable to mitigate attacks that explore
specific vulnerabilities in the target system. Nonetheless, if
desired, the system can used in combination with solutions for
preventing speficic attacks on the service-side, such as Intru-
sion Detection/Prevention Systems (IDS/IPS). The advantage
of using Arquitena in this scenario is that it should prevent
most of the malicious packets from reaching their intended
victims, reducing the overall load of the companion IDS/IPS.

The experimental evaluation of Arquitena’s effectiveness is
still an ongoing work. Among the metrics to be considered,
we can cite: the number of packets that arrive at the victim
per time interval, which indicates how well the system blocks
malicious traffic and allows legitimate packets through; the
time required for the system to detect an attack situation; the
time required for the system to block the attack, inserting
the appropriate filtering mechanisms at the network’s edge;
the rate of false-positives, i.e., situations in which a (large)
growth of legitimate traffic is misinterpreted as an attack; and
the rate of false-negatives, in which an actual attack is not
detected. The benchmark scenario beign built is composed
by emulated routers and injector package software. In this
manner, we will be able to create controlled DDoS attacks
and assess the efficiency of the Arquitena system in detecting
and mitigating them.

V. RELATED WORK

The application of MAS for the detection and mitigation
of DDoS attacks is not something new in the literature.
One example is the work proposed in [2], which employs
multiple specific agents having a single function: to detect
DDoS attacks by means of pattern recognition mechanisms.
The result is a solution with a high assertiveness rate in the
detection of DDoS attacks. The cost to be paid, however, is
high communication overhead depending on the amount of
agents involved, since those agents communicate constantly to
outline the attack flow. In comparison, Arquitena tries to keep
active only the essential agents for the detection of a DDoS
attack, dynamically activating relevant agents when (and only
when) necessary for further mitigation. This reduces the overall
system’s burden in terms of processing and communication. A
related solution also appears in [7], which describes a MAS-
based learning system focused on intrusion detection, covering,
among others threats, DDoS attacks. The learning process
relies on different sources of raw data, including network
traffic, operating system and application activities, which are
then combined. One shortcoming of this approach is that the

origin of this data is both distributed and heterogeneous, which
may lead to inconsistencies in different parts of the system.
Arquitena tries to overcome this issue by making an external
agent responsible for all data collection, providing a more
homogeneous picture of the real network traffic as required
by each different agent. Another important limitation of [7]
when compared to Arquitena is that the former only takes
advantage of the multiple agents for identifying DDoS attacks,
while no mitigation mechanism is provided. The combination
of detection and mitigation of DDoS attacks using MAS
is explored by Juneja et al. [8] and by Singh et al. [13].
Both frameworks use the multiple agents dispersed all over
the network to verify a packet’s authenticity via source IP
validation, a process by which the system determines whether
its source corresponds to a real machine. Packets detected
as forged are then blocked. However, the very fact that they
rely on source IP validation for discerning legitimate traffic is
probably the main limitation of this strategy, since this method
is ineffective against attacks based on botnets, which are quite
common nowadays [9]. The system proposed in [13] is also
limited to mitigate attacks from one type of transport protocol
(namely, UDP) and provides no mechanism for tracing the
route taken by forged packets. Even though [8] does allow
attack routes to be traced, potentially admitting more effective
mitigation, its own authors admit that the number of agents
required to get optimal results is something that needs further
investigation [13]. Arquitena, on the other hand, was designed
to be generic enough to detect attacks based on any transport-
layer protocol, relying on network patterns rather than IP
addresses for determining the attack routes.

VI. CONCLUSIONS

DDoS attacks have become a major threat to ISPs in the
last few decades [1].

Aiming to tackle this issue, we described Arquitena, a
system for detection and mitigation of DDoS attacks based
on large amounts of traffic. The system is composed of
multiple collaborative agents that, without manual intervention
of the ISP network’s administrators, detect the attack route and
gradually deploys barriers to the malicious packets, pushing
the defense perimeter toward the network’s edge (nearer to
the attackers). By covering all regions of the ISP network
and constantly learning the traffic patterns in that network,
Arquitena can be used as a powerful tool against DDoS attacks,
ensuring the availability of the ISP network’s resources to real
users.

Arquitena is currently under development, and its effec-
tiveness in preventing DDoS attacks will be evaluated both
individually and in association with traditional network secu-
rity solutions (e.g., Intrusion Detection/Prevention Systems).
Our goal is to feed the agents with real traffic traces collected
from an ISP and then simulate different attack scenarios and
assess the system’s behavior in each of them.

ACKNOWLEDGMENT

This work was in part supported by the São Paulo Re-
search Foundation (FAPESP) under grants 2010/20620-5 and
2011/21592-8.

A multiagent approach for detecting and mitigating DDoS attacks

65

REFERENCES

[1] Arbor. Worldwide infrastructure security report. http://www.
arbornetworks.com/research/infrastructure-security-report, 2012.

[2] Z. Baig and K. Salah. Multi-agent pattern recognition mechanism for
detecting distributed denial of service attacks. IET Information Security,
4(4):333–343, 2009.

[3] R. Bordini, J. Hubner, and M. Wooldridge. Programming multi-agent
systems in AgentSpeak using Jason. Wiley, 1th edition, 2007.

[4] L. Breiman. Random forests. In Machine Learning Journal, Vol. 45,
Issue 1, pages 5–32. Kluwer Academic Publishers, 2001.

[5] S. Chen and Q. Song. Perimeter-based defense against high bandwidth
ddos attacks. IEEE Trans. Parallel Distrib. Syst., 6(16):526–537, 2005.

[6] Tim Finin, Jay Weber, Gio Wiederhold, Mike Genesereth, Rich Fritzson,
Don McKay, Stu Shapiro, Jim McGuire, Richard Pelavin, and Chris
Beck. Specification of the kqml agent-communication language, 1994.

[7] V. Gorodetski, I. Kotenko, and O. Karsaev. Multi-agent technologies
for computer network security: Attack simulation, intrusion detection
and intrusion detection learning. Int. J. of Computer Science Systems
Science & Engineering, 2003.

[8] D. Juneja, R. Chawla, and A. Singh. An agent-based framework to
counterattack ddos attacks. Int. J. of Wireless Networks and Communi-
cations, 1(2):193–200, 2009.

[9] Z. Mao, Vyas Sekar, Oliver Spatscheck, Jacobus van der Merwe, and
Rangarajan Vasudevan. Analyzing large ddos attacks using multiple
data sources. In Proc. of the 2006 SIGCOMM workshop on Large-scale
attack defense, LSAD ’06, pages 161–168, NY, USA, 2006. ACM.

[10] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of
Service - Attack and defense mechanisms. Prentice Hall, 1th edition,
2004.

[11] Y. Ohsita, S. Ata, and M. Murata. Detecting distributed denial-of-
service attacks by analyzing TCP SYN packets statistically. In IEEE
GLOBECOM’04, volume 4, pages 2043–2049, 2004.

[12] Riorey. Riorey taxonomy of ddosattacks. http://www.riorey.com/
x-resources/2011/RioRey Taxonomy DDoS Attacks 2.2 2011.pdf,
2011.

[13] A. Singh and D. Juneja. Agent based preventive measure for UDP flood
attack in DDoS attacks. Int. J. of Engineering Science and Technology,
2:3405–3411, 2010.

[14] W. Stallings and L. Brown. Computer Security: Principles and Practice
(2nd ed.). Pearson, 2011.

Pereira,J., Simpĺıcio Jr and Brandão

66

A BDI-Fuzzy Agent Model for
Exchanges of Non-Economic Services
based on the Social Exchange Theory

Giovani P. Farias, Graçaliz P. Dimuro
Programa de Pós-Graduação em Computação

Universidade Federal do Rio Grande
Rio Grande, Brasil, Email: giovanifarias@gmail.com

Glenda Dimuro, Esteban de Manuel Jerez
Depto de Expresión Gráfica Arquitectónica

Universidad de Sevilla
Sevilla, Espanha, Email: glenda.dimuro@gmail.com

Abstract—The purpose of this work is to develop a BDI-
Fuzzy agent model for the Jason platform, with abilities to assess
qualitatively, subjectively the social exchanges values originated
in the provision and in the receipt of non-economic services,
based on Piaget’s theory of social exchanges. An application to
the simulation os exchange processes in a social organization,
namely, the urban vegetable garden San Jerónimo (Seville, Spain)
is presented.

Keywords—Multiagent Systems; Social Exchanges; BDI Archi-
tecture; Fuzzy Logic;

I. INTRODUÇÃO

Este trabalho situa-se no contexto das áreas de Sistemas
Multiagentes (SMA) [1] e de Simulação Social [2] baseada
em agentes, explorando temas relacionados à arquitetura de
agentes BDI (Beliefs, Desires and Intentions) [3] e à Lógica
Fuzzy [4], com o objetivo geral de experimentar um modelo
de agente BDI-Fuzzy, implementado na plataforma de agentes
Jason [5], para trocas de serviços não-econômicos baseados na
Teoria das Trocas Sociais de Piaget [6].

A teoria das trocas sociais de Piaget tem sido utilizada
como base para a análise de interações em sistemas multia-
gente, onde estas interações são compreendidas como proces-
sos de trocas de serviços, entre pares de agentes, seguidas da
avaliação destes serviços por parte dos agentes envolvidos, pro-
duzindo valores de trocas sociais, cuja natureza é qualitativa,
subjetiva, imprecisa, vaga, ambı́gua, incompleta.

A arquitetura de agentes BDI é baseada em estados men-
tais, tendo sua origem na teoria de raciocı́nio prático humano.
O caráter intencional do modelo BDI mostra-se adequado para
o problema abordado neste trabalho. Entretanto, observa-se que
o tratamento da incerteza gerada em ambientes/problemas de
informação imprecisa envolvidas em trocas de serviços não-
econômicos não está previsto, em geral, na arquitetura BDI.

Por outro lado, a Lógica Fuzzy, utilizada para a modelagem
de raciocı́nio aproximado e vago, permite descrever de forma
efetiva as caracterı́sticas de sistemas complexos ou que não
podem ser definidos de forma exata, pois, na Lógica Fuzzy,
os relacionamentos entre elementos e conjuntos seguem uma
transição entre pertinência e não pertinência que é gradual,
representados por valores de pertinência intermediários entre
o verdadeiro e o falso da lógica clássica.

Neste trabalho, com base na teoria das trocas sociais de
Piaget, desenvolveu-se um modelo hı́brido de agente BDI-
Fuzzy, na plataforma de agentes Jason, com habilidades para
avaliar de forma qualitativa/subjetiva os valores de trocas
sociais originados na prestação e no recebimento de serviços
não-econômicos, onde considera-se que os agentes assumem
diferentes critérios com relação aos atributos que vão utilizar
na avaliação do serviço (seja por parte de quem o realiza ou
de quem o recebe), o que os induz a diferentes “atitudes de
avaliação de serviço” e os agentes também podem assumir
diferentes estratégias referentes às trocas que optam por re-
alizar.

II. TRABALHOS RELACIONADOS

Na literatura existem várias referências ao uso da Lógica
Fuzzy para possibilitar aos agentes mecanismos de decisão
mais adaptáveis à realidade, podendo ter maior flexibilidade
em ambientes complexos e dinâmicos. Nos trabalhos de
simulação social baseada em agentes em [7], [8], facetas e
traços de personalidades humanas foram especificadas como
regras condicionais em agentes fuzzy (que são capazes de
executar raciocı́nio aproximado qualitativo), para realizar
simulação do comportamento humano. Já em [9], a Lógica
Fuzzy foi utilizada para avaliação de trocas sociais entre
agentes baseados em personalidades, propondo a análise das
interações entre agentes com base na noção de equilı́brio fuzzy
em trocas de serviços entre agentes.

No contexto de agentes BDI, nos trabalhos em [10], [11] foi
proposto um modelo geral para agentes BDI graduado, através
de uma arquitetura baseada em sistemas multi-contextos, que
admite atitudes mentais graduadas, em sentido similar ao
da Lógica Fuzzy. Uma arquitetura BDI Fuzzy para agentes
sociais foi proposta em [12], com uma proposta inicial para a
modelagem de sociedades cooperativas de agentes, apontando
para as condições sociais necessárias para os agentes formarem
intenções e ações conjuntas. Outra extensão ao modelo BDI
com caracterı́sticas fuzzy é o modelo Agent Fuzzy Decision-
Making (AFDM) [13], que permite que agentes BDI possam
tomar decisões com base em julgamentos quantificados de
forma fuzzy.

Finalmente, com relação a Teoria dos Valores de Trocas
Sociais proposta em [6] que têm sido utilizada como base
para aplicações em Sistemas Multiagente [14], onde, utiliza-se
valores de natureza qualitativa, que representam conceitos sub-
jetivos, porém a representação computacional destes valores

A BDI-Fuzzy Agent Model for exchanges of non-economic services based on the social Exchange theory

67

de trocas, ou de qualquer critério subjetivo, não é trivial. Os
trabalhos [15], [16] incluem uma metodologia para avaliação
de serviços em processos de trocas sociais. Em [9] foi proposta
uma abordagem baseada na Lógica Fuzzy para a avaliação
dos valores de trocas materiais (investimento e satisfação)
gerados nos dois estágios de trocas sociais, com aplicação
em sistemas multiagentes baseados em personalidades. Para
tanto, introduziu-se uma definição de serviço para cada um dos
agentes envolvidos na troca. Através da definição de fatores de
personalidades, adotou-se um critério que possibilitou obter
agentes com vários traços de personalidades, apesar de no
trabalho constar uma generalização para apenas três traços de
personalidades.

III. O MODELO DE TROCAS SOCIAIS

Segundo a teoria de Piaget, uma troca social entre dois
agentes α e β é executada em dois tipos de estágios. Nos
estágios de tipo Iαβ , o agente α realiza um serviço para o
agente β. Os valores de troca envolvidos neste tipo de estágio
são os seguintes:

• rIαβ
: investimento realizado por α para a realização

de um serviço para β;

• sIβα
: satisfação de β com o serviço realizado por α;

• tIβα
: débito de β para com α por sua satisfação com

o serviços realizado por α;

• vIαβ
: crédito que α adquire de β por ter realizado o

serviço.

Nos estágios de tipo IIαβ , o agente α solicita a β a
realização de serviço em pagamento pelo serviço realizado
anteriormente (no caso em que α tem créditos), e os valores
relacionados com este estágio de troca são análogos aos dos
estágios de tipo Iαβ . Os valores rIαβ

, sIβα
, rIIβα

e sIIαβ
associ-

ados imediatamente à uma troca realizada, são denominados de
valores materiais. Os valores associados às trocas postergadas
tIβα

, vIαβ
, tIIβα

e vIIαβ
são conhecidos como valores virtuais.

Em resumo, uma interação entre dois agentes/indivı́duos
pode ser interpretada como trocas de serviços. Quando um
serviço é executado então é possı́vel que este seja avaliado,
tanto pelo prestador (valor de seu investimento), como pelo
receptor (valor de sua satisfação). Posteriormente, são gerados
valores de débito (do receptor) e de crédito (do prestador), que
são levados em conta em trocas futuras.

A. Avaliação Fuzzy de Serviços

A realização de um serviço pelo agente α para o agente β
implica na geração imediata dos valores materiais de investi-
mento rαβ (de α que realizou o serviço à β) e de satisfação
sβα(de β que recebeu o serviço de α).

Definição 1: Em um processo de troca social, um serviço é
definido como uma tupla S = (a1; . . . ; an), onde cada ai, com
i ∈ N, é um atributo que representa um aspecto do serviço, a
ser analisado no processo de avaliação dos valores materiais
gerados pela realização de S. Se o processo de avaliação
envolve a análise do valor de investimento realizado por um
agente α, então utiliza-se a notação Sr(α). Se o processo de
avaliação envolve a análise do valor de satisfação de um agente
β, então utiliza-se a notação Ss(β).

O conjunto de atributos é dependente de uma aplicação
especı́fica, e pode variar se for considerada a avaliação do
valor do investimento do agente que presta o serviço ou a
satisfação do agente que recebe o serviço. A avaliação fuzzy
de um serviço é realizada através da composição da avaliação
de cada atributo que pertence a este serviço. Os atributos são
representados por variáveis linguı́sticas, cujo valor é expresso
qualitativamente por um termo linguı́stico e quantitativamente
por uma função de pertinência.

Uma escala com termos linguı́sticos T1; . . . ;Tm é denotada
por T = 〈T1; . . . ;Tm〉, com m ∈ N. Denota-se Tk ∈ T para
significar que o termo Tk está na escala T , ou seja 1 ≤ k ≤ m.
Para a avaliação de um atributo a utilizando uma escala é
necessário proceder a um processo de normalização.

Definição 2: Seja V (a) o valor medido do atributo a, N
o limite superior de uma escala decrescente e max o valor
limite tolerável para o atributo a, de acordo com o senso
comum. Então, o valor normalizado do atributo a é denotado
por Vnor(a) e definido como:

Vnor(a) = min{N,V ′
(a)}, onde V

′
(a) =

V (a)×N
max

(1)

O valor normalizado do atributo é então avaliado em uma
escala de valores fuzzy, obtendo então avaliação fuzzy do
atributo, denotada por µ(a).

Considerando um serviço Sr = (a1; . . . ; an) (ou Ss =
(b1; . . . ; bn)), então é possı́vel obter um conjunto de re-
gras condicionais através do cruzamento de resultados das
avaliações fuzzy individuais de seus atributos, utilizando a
regra de inferência MAX-MIN [17].

Seja T i = 〈T i1; . . . ;T ik〉 uma escala para avaliação de
um atributo ai de um serviço Sr(α) = (a1; . . . ; an) onde o
agente α presta um serviço para um agente β. Seja T r =
〈T r1 ; . . . ;T rm〉 a escala para avaliação fuzzy do investimento
rαβ por parte de α. Então a avaliação fuzzy do valor de
investimento rαβ é determinada pela regra de inferência MAX-
MIN aplicada sobre uma base de regras do tipo “IF ... THEN”
do tipo:

IF a1 is T 1
j AND a2 is T 2

l AND . . . an is Tnp THEN r
′
αβ is T

′r
q

onde T 1
j ∈ T 1;T 2

l ∈ T 2 . . . Tnp ∈ Tn;T rq ∈ T r. Na avaliação
de uma regra, primeiramente avalia-se cada condição do tipo
ai is T ij , com i = 1; . . . ;n, como sendo µi(Vnor(ai)). A partir
desses valores obtém-se a avaliação de r

′
αβ is T

′r
q como sendo

min{µ1(Vnor(a1)); . . . ;µn(Vnor(an))}.
O valor fuzzy de investimento rαβ é calculado a par-

tir das avaliações de todas as regras deste tipo. Para
cada termo T rv , com v = 1; . . . ;m, calcula-se o valor
max{T ′r

v , T
′′r
v , . . . , Tωrv }, onde ω ≤ k1 × . . . × kn, com ki,

sendo a cardinalidade da escala T i de avaliação de cada atri-
buto ai. Estes valores provocam um corte no termo linguı́stico
T rv e portanto uma região fuzzy em T r. Nessa região é aplicado
um método de defuzzificação, por exemplo o centróide [17],
para se obter o valor fuzzy de investimento rαβ . De forma
análoga se obtém o valor fuzzy da satisfação sβα do agente β
pelo recebimento do serviço realizado por α.

Farias, Dimuro and Dimuro

68

IV. MODELO BDI-FUZZY GENÉRICO

O modelo BDI-Fuzzy pode ser descrito como um Sistema
Baseado em Regras Fuzzy (SBRF) acoplado a base de crenças
do agente BDI, conforme apresentado na Figura 1.

Fig. 1. Arquitetura BDI-Fuzzy Genérica.

O processo de fuzzificação, neste caso, utiliza funções de
pertinência pré-estabelecidas, através das quais as entradas do
sistema (presentes na base de crenças do agente BDI) são
traduzidas em conjuntos fuzzy em seus respectivos domı́nios,
ou seja, o fuzzificador mapeia cada variável de entrada do
sistema em graus de pertinência de algum conjunto fuzzy que
representa a variável em questão. Neste modelo, os valores
fuzzificados podem simplesmente serem acrescentados à base
de crenças do agente, para posteriormente serem utilizados em
tomadas de decisões ou na máquina de inferência fuzzy para
obter novas proposições fuzzy.

A base de regras é composta por uma coleção de
proposições fuzzy na forma IF. . .THEN. . . descrevendo as-
sim, as relações entre as variáveis linguı́sticas, para serem
utilizadas na máquina de inferência fuzzy. Este componente,
juntamente com a máquina de inferência, pode ser considerado
o núcleo dos sistemas baseados em regras fuzzy, o qual, pode
ser utilizado para acrescentar diferentes caracterı́sticas entre os
agentes BDI-Fuzzy, principalmente relacionadas a processos
de avaliação e decisão.

A máquina de inferência fuzzy por meio das técnicas
de raciocı́nio aproximado, traduz matematicamente cada
proposição fuzzy, sendo de fundamental importância para o
sucesso do sistema fuzzy, já que fornece a saı́da a partir de cada
entrada fuzzy e da relação definida pela base de regras. Neste
modelo, os agentes BDI-Fuzzy utilizam o método de inferência
de Mamdani, onde: uma regra IF (antecedente) THEN (conse-
quente) é definida pelo produto cartesiano fuzzy dos conjuntos
fuzzy que compõem o antecedente e o consequente da regra.
O método de Mamdani agrega as regras através do operador

lógico “or”, que é modelado pelo operador máximo (t-conorma
∨) e, em cada regra, o operador lógico “and” é modelado pelo
operador mı́nimo (t-norma ∧). Conforme as seguintes regras:

R(1): IF x is A1 and y is B1 THEN z is C1

R(2): IF x is A2 and y is B2 THEN z is C2

A defuzzificação é um processo de se representar um
conjunto fuzzy por um número real. Em sistemas fuzzy, em
geral a saı́da é um conjunto fuzzy. Assim, devemos escolher
um método para defuzzificar a saı́da e obter um número
real que a represente. Neste modelo, o agente BDI-Fuzzy e
capaz de lidar com as duas saı́das do sistema, sendo ela um
conjunto fuzzy ou um número real. Desta forma, o processo
de defuzzificação não é obrigatório, podendo ser utilizado para
agregar informações à base de crenças do agente.

A. Atitudes de Avaliação de Serviço

A avaliação fuzzy de um serviço por um agente é realizada
através da composição da avaliação de um, dois ou mais atri-
butos que pertencem a esse serviço. Os atributos do serviço são
representados por variáveis linguı́sticas, cujo valor é expresso
qualitativamente por um termo linguı́stico e quantitativamente
por uma função de pertinência.

A Figura 2 apresenta a arquitetura do sistema de avaliação
fuzzy de serviço do agente BDI-Fuzzy, onde este obtém os
atributos de um serviço S(a1, . . . , an), esses atributos passam
por um processo de normalização, para se adequarem a uma
escala padrão, sendo então escolhidos os atributos a serem
considerados na avaliação fuzzy do serviço. Os atributos
selecionados passam por um processo de fuzzificação para
obter a sua representação qualitativa, através dos seus termos
linguı́sticos. As combinações dos termos linguı́sticos ativam
uma dentre as várias bases de regras disponı́veis, as quais
são baseadas no método de inferência de Mamdani. Como
resultado final, obtém-se o valor fuzzy do serviço (valor
fuzzy do investimento ou da satisfação), o qual pode ser
defuzzificado.

B. Balanço Material e Virtual

Em uma sociedade, toda ação ou reação de um indivı́duo,
avaliado segundo sua escala pessoal, repercute necessariamente
sobre os outros indivı́duos. Logo, ocorre uma troca na qual
cada ação (real ou virtual) do primeiro provocará uma ação de
volta (real ou virtual) por parte dos outros indivı́duos [18]. A
dinâmica da troca provoca uma variação nos valores dos in-
divı́duos, que pode ser positiva (i.e., satisfação, lucro), negativa
(i.e., prejuı́zo) ou nula (i.e., equilı́brio).

O balanço material de um agente α, no modelo BDI-
Fuzzy, é obtido através de uma avaliação fuzzy (qualitativa)
influenciada pelos valores materiais de investimento (rα) e
satisfação (sα), avaliados segundo a escala pessoal de α, gera-
dos na troca de serviços com um outro agente. Deste modo, o
balanço material representa uma avaliação pessoal do agente
α, baseada nos valores materiais (rα) e (sα), a qual indica se a
dinâmica da troca provoca uma variação “possitiva” (α recebe
um serviço cuja satisfação é significativa), “negativa” (α
realiza um serviço cujo investimento é significativo) ou “nula”
(investimento/satisfação de α na realização/recebimento de um
serviço é insignificante) nos valores materiais de α.

A BDI-Fuzzy Agent Model for exchanges of non-economic services based on the social Exchange theory

69

Fig. 2. Arq. do sistema de avaliação fuzzy de serviço do agente BDI-Fuzzy

O balanço virtual de um agente α, no modelo BDI-
Fuzzy, é obtido através de uma avaliação fuzzy (qualitativa)
influenciada pelos valores virtuais de crédito (vα) e débito
(tα), gerados na troca de serviços com um outro agente. Deste
modo, o balanço virtual representa uma avaliação do agente
α, baseada nos valores virtuais (vα) e (tα), a qual indica
se a dinâmica da troca provoca uma variação “positiva” (α
realiza um serviço e adquire crédito significativo), “negativa”
(α recebe um serviço cujo débito é significativo) ou “nula” (
crédito/débito de α na realização/recebimento de um serviço
é insignificante) nos valores virtuais de α.

V. ESTUDO DE CASOS

As simulações foram realizadas em uma ambiente de uma
horta urbana, com objetivo de analisar o comportamento dos
diferentes tipos de agentes hortelãos1 BDI-Fuzzy, que apre-
sentam caracterı́sticas distintas, na maneira como realizam um
determinado serviço, nas “atitudes de avaliação de serviço” e
nas suas “estratégias de troca”. Considere que cada agente
hortelão possui a sua parcela de terra e pode realizar três
tipos de serviços: plantar, irrigar e colher. Onde esses serviços
podem ser “trocados” entre os agentes. Neste ambiente, o
hortelão α, “prestador” de um determinado serviço a β,
pode avaliar o investimento rαβ necessário para a realização
do serviço S de acordo com os seguites atributos: Sr =
(dificuldade, custo, tempo). Já o hortelão β, “recebedor” de
um serviço de α, pode avaliar a sua satisfação sβα de acordo
com os atributos: Ss = (qualidade, preço, tempo).

O hortelão é o agente capaz de realizar os serviços de
plantar, irrigar e colher no ambiente da horta. Cada hortelão
apresenta caracterı́sticas especı́ficas para a realização de cada
um dos serviços, essas caracterı́sticas afetam os atributos dos

1Estes estudos foram realizados em um projeto de cooperação com a
Universidad de Sevilla, para o desenvolvimento de ferramentas para simulação
de processos de produção e gestão social de ecossistemas urbanos [19], mais
especificamente, a horta urbana de San Jerónimo, (Sevilla, Espanha).[20], [21]

serviços realizados pelo agente, os quais podem influenciar
nas interações com os outros agentes. O agente hortelão pode
apresentar três caracterı́sticas diferentes para escolher o agente
com o qual irá interagir, chamadas de “estratégias de trocas
de serviços”.

A primeira consiste na escolha baseada somente na
“satisfação esperada”, ou seja, após o agente receber todas as
“propostas” (valores dos atributos qualidade, preço e tempo)
dos agentes presentes na horta para a realização de um serviço,
o hortelão, de acordo com a sua “atitude de avaliação de
serviço”, escolhe o agente que pode lhe proporcionar uma
maior satisfação (s) com o serviço prestado.

A segunda consiste na escolha baseada na “satisfação
esperada” e no balanço virtual, neste caso, o hortelão após
receber todas as “propostas”, verifica a “satisfação esperada”
e o balanço virtual com cada um dos agentes, sendo a
combinação entre esses dois valores que determinará a “chance
de escolha” do agente para a realização do serviço. Neste
caso o hortelão prefere trocar serviços com os agentes que
lhe enviaram uma melhor proposta e com os quais ele possui
um balanço virtual “positivo” (crédito v > débito t).

A terceira consiste na escolha baseada na “satisfação
esperada” e no balanço material, neste caso, o hortelão após
receber todas as “propostas”, verifica a “satisfação esperada”
e o balanço material com cada um dos agentes, sendo a
combinação entre esses dois valores que determinará a “chance
de escolha” do agente para a realização do serviço. Assim,
o hortelão prefere trocar serviços com os agentes que lhe
enviaram uma melhor proposta e com os quais ele possui um
balanço material “negativo” (investimento r > satisfação s).

A. Análise das Simulações

As simulações representam o ambiente da Horta, no qual
três agentes do tipo Hortelão interagem. Os agentes são
denominados de Hortelão 1, Hortelão 2 e Hortelão 3, respec-
tivamente, e apresentam caracterı́sticas distintas na maneira
como realizam um determinado serviço e nas suas atitudes de
avaliação de serviço. Os hortelãos podem realizar três tipos
de serviços na horta: plantar, irrigar e colher. Os intervalos
dos possı́veis valores gerados para cada atributo dos serviços
prestados pelos agentes Hortelão 1, 2 e 3, são apresentados na
Tabela I, através da qual pode-se observar que:

• Hortelão 1 – realiza serviços de baixa qualidade, com
preço alto e com um tempo elevado;

• Hortelão 2 – realiza serviços de média qualidade, com
preço médio e com um tempo intermediário;

• Hortelão 3 – realiza serviços de qualidade média a
alta, com preços que variam de baixo a médio e com
um tempo curto a médio.

A Tabela II apresenta os intervalos de valores, para cada
atributo do serviço, utilizados para o cálculo do investimento
(r) do Hortelão 1, 2 e 3 na realização de um serviço. Através
dos quais, pode-se observar que:

• Hortelão 1 – considera que os três serviços da Horta
são “fáceis” de realizar, ou seja, apresentam uma
dificuldade baixa, porém lhe consomem muito tempo
e recurso;

Farias, Dimuro and Dimuro

70

TABLE I. VALORES DOS ATRIBUTOS DOS SERVIÇOS REALIZADOS PELOS AGENTES Hortelão 1, 2 E 3

Serviços Hortelão 1 Hortelão 2 Hortelão 3
qualidade preço tempo qualidade preço tempo qualidade preço tempo

plantar 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45
irrigar 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45
colher 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45

• Hortelão 2 – apresenta valores intermediários para os
três atributos dos serviços da Horta;

• Hortelão 3 – apresenta uma dificuldade elevada para
executar os três serviços da Horta, porém estes não
lhe consomem muito tempo e recurso.

Cada hortelão, quando necessita de um serviço, envia
uma requisição de “proposta” de serviço a todos os outros
hortelãos presentes na Horta. Após o recebimento de todas as
“propostas” o hortelão escolhe o agente com o qual irá trocar
serviço, de acordo com a sua “estratégia de troca”.

Nas simulações realizadas, cada hortelão executa 100
requisições de cada um dos serviços da horta, gerando um
total de 300 requisições por agente. Essas interações seguem
uma ordem pré-estabelecida, como descrita a seguir:

Hortelão 1 requisita serviço . . . serviço terminado y
Hortelão 2 requisita serviço . . . serviço terminado y

Hortelão 3 requisita serviço . . . serviço terminado y
Hortelão 1 requisita serviço . . . serviço terminado y
· · ·

Essa sequência evita que um único agente requisite diversas
propostas de serviços seguidas, impossibilitando que os outros
agentes realizem suas requisições.

Nas simulações realizadas o Hortelão 1 avalia o investi-
mento gerado na realização de um serviço da Horta, levando
em consideração somente o valor do atributo “dificuldade”
e avalia a satisfação obtida no recebimento de um serviço
levando em consideração somente o valor do atributo “qua-
lidade”. O Hortelão 2 avalia o investimento levando em
consideração os valores dos atributos “dificuldade” e “tempo”
e avalia a satisfação levando em consideração os valores
dos atributos “qualidade” e “tempo”. O Hortelão 3 avalia
o investimento levando em consideração os três atributos do
serviço “dificuldade”, “custo” e “tempo” e avalia a satisfação,
também, levando em consideração os três atributos do serviço
“qualidade”, “preço” e “tempo”.

B. Simulação com Estratégia de Troca Baseada na Satisfação

Nesta simulação, são avaliados os valores defuzzificados
dos balanços materiais e virtuais dos três agentes hortelão
(Hortelão 1, Hortelão 2 e Hortelão 3) nas diversas trocas de
serviços realizadas. Neste caso, os três hortelãos utilizam a
estratégia de troca baseada na satisfação. Essa estratégia de
troca combinada com as outras caracterı́sticas dos hortelãos
resultou nos seguintes números de serviços realizados por cada
agente:

• O Hortelão 1 não foi escolhido por nenhum dos
agentes para realizar serviço;

• O Hortelão 2 realizou 28 serviços para o Hortelão 1
e realizou 300 serviços para o Hortelão 3;

• O Hortelão 3 realizou 272 serviços para o Hortelão 1
e realizou 300 serviços para o Hortelão 2.

Assim, pode-se somar o número de serviços prestados entre
dois agentes, para obter o total de trocas realizadas entre esses
agentes durante a simulação. Neste caso, ocorreram:

• 28 trocas entre os hortelãos 1 e 2;
• 272 trocas entre os hortelãos 1 e 3;
• 600 trocas entre os hortelãos 2 e 3.

Fig. 3. Balanços virtuais dos hortelãos 1 e 2 com estratégia de troca baseada
na satisfação

A Figura 3 mostra os balanços virtuais dos hortelãos 1 e
2, onde pode-se observar que, pelo fato do Hortelão 1 só ter
recebido serviços, este acumula dı́vidas com o Hortelão 2, o
qual, por sua vez, acumula créditos por ter sido o único a
realizar serviços nas 28 interações que teve com o Hortelão 1.

Fig. 4. Balanços virtuais dos hortelãos 1 e 3 com estratégia de troca baseada
na satisfação

A Figura 4 mostra os balanços virtuais dos hortelãos 1 e 3,
onde observa-se uma certa semelhança com a Figura 3, porém
neste caso ocorreu um número muito maior de interações entre
os agentes, onde nessas 272 interações, somente o Hortelão
3 realizou serviços, resultando assim num balanço virtual
“negativo” para o Hortelão 1, que acumulou dı́vidas.

Fig. 5. Balanços virtuais dos hortelãos 2 e 3 com estratégia de troca baseada
na satisfação

A Figura 5 mostra os balanços virtuais dos hortelãos 2 e 3,
neste caso os valores dos balanços apresentam oscilações em
torno de 5, sendo (5.030900671) a média do balanço virtual

A BDI-Fuzzy Agent Model for exchanges of non-economic services based on the social Exchange theory

71

TABLE II. VALORES DOS ATRIBUTOS DOS SERVIÇOS PARA O CÁLCULO DO investimento REALIZADO PELOS AGENTES Hortelão 1, 2 E 3

Serviços Hortelão 1 Hortelão 2 Hortelão 3
dificuldade custo tempo dificuldade custo tempo dificuldade custo tempo

plantar 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45
irrigar 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45
colher 0 a 2.5 75 a 100 60 a 90 2.5 a 7.5 25 a 75 30 a 60 5 a 10 0 a 50 1 a 45

do Hortelão 2 e (5.032719712) a média do balanço virtual
do Hortelão 3, o que demonstra um equilı́brio virtual entre os
agentes nas 600 interações, onde cada agente realizou a mesma
quantia de serviços (300), fato esse que pode ter contribuı́do
para o equilı́brio dos balanços virtuais.

Analisando os valores e os gráficos presentes, observa-
se que a estratégia de troca baseada somente na satisfação
favorece a interação (troca de serviços) entre os agentes que a-
presentam melhores caracterı́sticas na realização do serviço, ou
seja, esses agentes têm uma chance maior de serem escolhidos
para realizarem o serviço, pois, apresentam atributos melhores
para a realização do mesmo e consequentemente causam uma
satisfação maior para o agente que recebe o serviço. Esse tipo
de estratégia de troca não leva em consideração os balanços
materias e virtuais entre os agentes, permitindo, neste caso, que
um determinado agente somente receba ou realize um serviço
em diversas interações (como o ocorrido com o Hortelão 1
que não foi escolhido por nenhum dos agentes para realizar
serviço).

VI. CONCLUSÃO

Neste trabalho foi desenvolvido um modelo hı́brido de
agente BDI-Fuzzy para a plataforma de agentes Jason, com
habilidades de avaliar de forma qualitativa os valores de trocas
sociais originados na prestação e no recebimento de serviços
não-econômicos. Um serviço é definido como um conjunto de
atributos que são utilizados na sua avaliação (e.g, qualidade,
dificuldade, tempo, custo, etc). O agente pode considerar um,
dois ou mais atributos do serviço na sua avaliação (tanto na
prestação como no recebimento de um serviço), configurando
as diferentes atitudes de avaliação de serviço. Os agentes
também podem assumir diferentes atitudes com relação às
trocas de serviços que optam por realizar, podendo levar em
consideração os valores dos balanços materiais e virtuais na
escolha dos agentes com os quais irão interagir.

ACKNOWLEDGMENTS

This work was supported by CNPq (Proc. 560118/10-4,
305131/2010-9, 476234/2011-5) , FAPERGS (Proc. 11/0872-
3) and Projeto RS-SOC (FAPERGS Proc. 10/0049-7).

REFERENCES

[1] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester:
Wiley, 2002.

[2] N. Gilbert, Agent-based Models. Los Angeles: SAGE, 2008.
[3] A. S. Rao and M. P. Georgeff, “An abstract architecture for rational

agents,” in Proc. of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR’92). Morgan Kauf-
mann, oct 1992, pp. 439–449.

[4] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.
338–353, 1965.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. University of Liverpoll:
Wiley, 2007.

[6] J. Piaget, Sociological Studies. London: Routlege, 1995.
[7] N. Ghasem-Aghaee and T. I. Ören, “Towards fuzzy agents with dynamic

personality for human behavior simulation,” in Proc. of the 2003
Summer Computer Simulation Conference, Montreal, July 20-24, 2003.
San Diego: SCS, 2003, pp. 3–10.

[8] T. I. Ören and N. Ghasem-Aghaee, “Personality representation process-
able in fuzzy logic for human behavior simulation,” in Proc. of the 2003
Summer Computer Simulation Conference, Montreal, July 20-24, 2003.
San Diego: SCS, 2003, pp. 11–18.

[9] G. P. Dimuro, A. V. Santos, G. P. Bedregal, and A. C. R. Costa, “Fuzzy
evaluation of social exchanges between personality-based agents,” in
New Trends In Artificial Intelligence, Proc. of 14th Portuguese Con-
ference on Artificial Intelligence, EPIA’2009, L. S. Lopes, N. Lau,
P. Mariano, and L. M. Rocha, Eds. Aveiro: APIA/Universidade de
Aveiro, 2009, pp. 451–462.

[10] A. Casali, L. Godo, and C. Sierra, “Graded BDI models for agent ar-
chitectures,” in In 5th International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA V, ser. LNAI, vol. 3487. Springer,
2004, pp. 126–143.

[11] ——, “Modelos BDI graduados para arquitecturas de agentes,” Revista
Iberoamericana de Inteligencia Artificial, vol. 9, no. 26, pp. 67–75,
2005.

[12] S. A. Long and A. C. Esterline, “Fuzzy BDI architecture for social
agents,” in Proceedings of the IEEE Southeastcon 2000, N. R. Pal,
N. Kasabov, R. K. Mudi, S. Pal, and S. K. Parui, Eds. Los Alamitos:
IEEE, 2000, pp. 68–74.

[13] S. Shen, G. M. P. O’Hare, and R. Collier, “Decision-making of BDI
agents, a fuzzy approach,” in Proceedings of The Fourth International
Conference on Computer and Information Technology. Washington:
IEEE, 2004, pp. 1022 – 1027.

[14] G. P. Dimuro, A. C. R. Costa, and L. A. M. Palazzo, “Systems of
exchange values as tools for multi-agent organizations,” Journal of the
Brazilian Computer Society, vol. 11, no. 1, pp. 31–50, 2005, (Special
Issue on Agents’ Organizations).

[15] M. R. Rodrigues, A. C. R. Costa, and R. Bordini, “A system of exchange
values to support social interactions in artificial societes,” in Proc. II
Intl Conf. on Autonomous Agents and Multiag. Systems, AAMAS’03.
Melbourne: ACM Press, 2003, pp. 81–88.

[16] M. R. Rodrigues and A. C. R. Costa, “Using qualitative exchange values
to improve the modelling of social interactions,” in Proc. of IV Work.
on Agent Based Simulations, MABS’03, Melbourne, 2003, ser. LNAI,
D. Hales, B. Edmonds, E. Norling, and J. Rouchier, Eds., no. 2927.
Berlin: Springer, 2004, pp. 57–72.

[17] T. J. Ross, Fuzzy Logic with Engineering Applications. New Mexico
- USA: Wiley, 2004.

[18] J. Piaget, Estudos Sociológicos. Rio de Janeiro: Forense, 1973.
[19] G. Dimuro and E. M. Jerez, “La comunidad como escala de trabajo

en los ecosistemas urbanos,” Revista Ciencia y Tecnologı́a, vol. 10, pp.
101–116, 2011.

[20] F. C. P. Santos, T. F. Rodrigues, G. Dimuro, D. F. Adamatti, G. P.
Dimuro, A. C. R. Costa, and E. De Manuel Jerez, “Modeling role
interactions in a social organization for the simulation of the social pro-
duction and management of urban ecosystems: the case of San Jerónimo
vegetable garden of Seville, Spain,” in 2012 Brazilian Workshop on
Social Simulation, Advances in Social Simulation II. Los Alamitos:
IEEE, 2012, pp. 136–139.

[21] I. S. Santos, T. Rodrigues, G. P. Dimuro, A. R. Costa, G. Dimuro,
and E. de Manuel, “Towards the modeling of the social organization
of an experiment of social management of urban vegetable gardens,”
in Proceedings of 2011 Workshop and School of Agent Systems, their
Environment and Applications. Los Alamitos: IEEE, 2011, pp. 98
–101.

Farias, Dimuro and Dimuro

72

Integrating CartAgO Artifacts for the Simulation of
the Social Production and Management of Urban
Ecosystems: the case of San Jerónimo Vegetable

Garden of Seville, Spain

Flávia Santos, Henrique Rodrigues, Thiago Rodrigues
Diana F. Adamatti, Graçaliz P. Dimuro

Programa de Pos-Graduação em Modelagem Computacional
Universidade Federal de Rio Grande, FURG

Rio Grande, Brazil
Email: faflasan@gmail.com

Glenda Dimuro, Esteban de Manuel Jerez
Depto de Expresión Gráfica y Arquitectónica,

Universidad de Sevilla
Sevilla, Spain

Email: glenda.dimuro@gmail.com

Abstract—The paper presents some new results obtained with
the modeling of a multi-agent system for the simulation of
the social production and management processes of an urban
ecosystem, namely, the urban vegetable garden San Jerónimo
(HSJ) of Seville, Spain. The modeling was obtained by the
application of several tools related to the JaCaMo platform, as
the MOISE+ model for the organization modeling, the CArtAgO
and MSPP frameworks for the construction of normative and
communication artifacts. The aim is to provide tools for the
modeling of the interactions between organizational roles when
performing periodic actions in the HSJ’s social system routines.
Furthermore, we show an initial proposal for integration between
JaCaMo tools in the context of HSJ.

Keywords—Periodic routines, JaCaMo, Artifacts; multiagent
systems; Social Systems;

I. INTRODUÇÃO

Para reparar danos ambientais é necessário solucionar
questões sociais e econômicas, que implicam mudanças de
mentalidades e comportamentos, ampliando a participação e
implicação de cidadãos na defesa do seu entorno. É neste
ponto que se faz a conexão entre a ecologia urbana e a
produção e gestão social do hábitat [1], [2], [3], [4]. Transpor
a sustentabilidade da teoria à prática significa conceber o ser
humano e o território onde a maioria da espécie se desenvolve
– as cidades – como parte da natureza, sob o conceito de
“ecossistemas urbanos” [5], [6]. Um ecossistema urbano não
é uma simples agregação de espaços aleatórios, mas um todo
conectado com redes dentro de redes com causas e efeitos;
um hábitat com uma estrutura coerente com os paradig-
mas culturais e necessidades especı́ficas de um determinado
grupo e contexto; um processo de incremento incessante de
informações; um território fisicamente fechado, mas aberto a
fluxos de energia e recursos.

O conceito de produção e gestão social de ecossistemas
urbanos pode ser compreendido como a geração de no-
vas situações, fı́sicas ou relacionais, mediante a construção,
transformação ou eliminação de objetos fı́sicos ou de objetos
relacionais com objetivo de assegurar, nas novas situações

produzidas, o cumprimento de suas funções sociais e ambi-
entais [2], [3]. Isto inclui a participação cidadã nos processos
de planejamento e transformação urbana, articulando distintos
agentes envolvidos (governo, instituições, técnicos, cidadãos),
formando uma rede estruturada e apoiada em mecanismos
e ferramentas que possibilitem a distribuição igualitária de
poder na tomada de decisões, de modo que todos agentes
possam participar, dialogar ativamente em todo processo de
determinado projeto, desde sua planificação até a gestão. A
produção gestão social de ecossistemas urbanos contribuem ao
fortalecimento de práticas comunitárias, ao aumento da respon-
sabilidade por um projeto coletivo, ao exercı́cio da democracia,
ao desenvolvimento de ações mais solidárias, incluindo tanto
temas produtivos e econômicos, como ambientais.

Este trabalho apresenta alguns resultados preliminares obti-
dos na modelagem de um sistema multiagente para a simulação
da produção e gestão social de um ecossistema urbano - um
esforço conjunto para a inter-relação do conhecimento, bus-
cando interpretações coletivas, adotando como estudo de caso
a tendência atual de (re) aproximar o campo à cidade através de
hortas urbanas. A organização escolhida é o projeto de hortas
sociais realizado no Parque San Jerónimo (Sevilha/Espanha),
impulsionada pela ONG Ecologistas em Acción.

O objetivo geral do Projeto onde se insere este tra-
balho é desenvolver uma ferramenta de simulação baseada
em SMA para a análise da realidade atual do projeto, per-
mitindo discussões sobre os processos de gestão social ado-
tadas, e também para investigar como possı́veis mudanças
nas ações, comportamentos e papéis assumidos pelos agentes
na organização, especialmente do ponto de vista de sua
participação nos processos de tomada de decisões, podem
transformar esta realidade, desde o ponto de vista social,
ambiental e econômico, e contribuir para a sustentabilidade
do projeto HSJ.

A ferramenta adotada neste Projeto é a plataforma JaCaMo
(http://jacamo.sourceforge.net/) [7], que é um framework para
programação multiagente que combina três tecnologias distin-
tas, ou seja, Jason (para programação de agentes) [8], Cartago

Integrating CartAgO Artifacts for the Simulation of the Social Production and Management of Urban

Ecosystems: the case of San Jerónimo Vegetable Garden of Seville, Spain

73

(para artefatos do ambiente de programação) [9] e MOISE+
(para modelagem da organização multiagentes) [10], [11].

Em trabalhos anteriores [12], [13], apresentou-se a primeira
fase da modelagem da organização do SMA, desenvolvida
usando o modelo organizacional MOISE+, identificando os
papéis organizacionais da horta San Jerónimo e suas rotinas,
as interações sociais, as normas reguladoras e constitutivas.

No entanto, verificou-se que, embora o modelo MOISE+
possibilite a visualização estrutural do sistema organizacional,
bem como seus schemes, permitindo facilmente ver, por
exemplo, a ordem em que os objetivos devem ser atingidos,
as interações entre os papéis organizacionais, não é possı́vel
concretizar a modelagem de um sistema social que envolva
o aspecto de “periodicidade” em suas rotinas. Observe que
a organização social da HSJ é baseada na realização das
rotinas periódicas pelos papéis e também no cumprimento das
normas que regulam seus comportamentos periódicos. Assim,
para contornar esse problema, optou-se por explorar mais a
plataforma JaCaMo e utilizar outra ferramenta relacionada,
a saber, o framework MSPP (Modelagem e Simulação de
Polı́ticas Públicas) [14], que mostrou-se adequado, permitindo
especificar a periodicidade das rotinas de papéis para o sistema
da HSJ.

Então, no presente artigo, propõe-se a integração entre
diversos tipos de Artefatos (Organizacionais, Normativos, de
Comunicação e Fı́sicos) e o ambiente para o domı́nio da HSJ
através do framework CArtAgO na plataforma Jason. Para
construir os artefatos normativos levaram-se em consideração
as normas da HSJ e utilizou-se o framework MSPP (Mode-
lagem e Simulação de Polı́ticas Públicas).

Diagramas de atividades da UML foram utilizados ini-
cialmente para identificar como ocorrem as interações entre
os papéis, com objetivo de definir uma abordagem para lidar
com a comunicação de papéis em interações usando artefatos
CArtAgO, visando afastar dos agentes que desempenham
papéis organizacionais a lógica de troca de mensagens uti-
lizando um determinado protocolo, obtendo uma abordagem
mais modular de comunicação do agente. Para isso, foram
criados Artefatos de Comunicação divididos em dois grupos
“artefatos de atos de fala” e “artefatos de protocolo”, imple-
mentados através do framework CArtAgO [15].

O artigo está organizado da seguinte forma. Na Seção II,
identificam-se os papéis que compõem a organização da HSJ e
suas rotinas, com base em normas constitutivas e regulativas,
construı́das a partir do regulamento da HSJ. Na Seção III,
apresenta-se o estudo sobre a plataforma JaCaMo e suas três
tecnologias Jason, CartAgO e MOISE+ e o framework MSPP
para modelagem de rotinas de papéis na HSJ.A Seção IV des-
creve uma breve introdução sobre a criação e uso dos artefatos
para o estudo de caso da HSJ. A Seção V apresenta exemplos
de uso dos artefatos no contexto da horta. A Seção VI é a
Conclusão.

II. PROJETO HORTAS DE ÓCIO (HUERTOS DE ÓCIO)

A Horta San Jerónimo (HSJ) é uma iniciativa da ONG
Ecologistas em Acción com o objetivo de fomentar a
participação social em práticas de agricultura orgânica, me-
diante o uso e desfrute de hortas de lazer, e realização de

atividades vinculadas com a educação ambiental. Atualmente
a zona de hortas ocupa uma área de mais ou menos 1,5 hectares
do Parque de São Jerônimo, com um total de 42 parcelas (di-
mensões entre 75m2 e 150m2) que se distribuem em hortas de
ócio (principalmente cuidadas por hortelãos aposentados, mas
não exclusivamente), hortas escolares (dedicadas aos alunos do
ensino fundamental das escolas do bairro) e em parcelas cedi-
das a outras associações para experimentos cientı́ficos (como a
Rede Andaluzia de Sementes e a Plataforma Andaluzia Livre
de Transgênicos). As hortas são designadas aos hortelãos e o
direito a utilização (e não a propriedade) da parcela ocorre por
um prazo de dois anos prorrogáveis – sempre que cumpram
as normas e regras estabelecidas no regulamento definido pela
ONG. Suas principais caracterı́sticas são o fato de ser uma
horta social sem fins lucrativos, ou seja, a produção é dedicada
para o autoconsumo daqueles que as cultivam (a venda é ilegal)
e ser apoiada economicamente por financiamento municipal e
colaboração dos participantes.

A HJS é regida por normas e a ONG é quem verifica o
cumprimento destas normas. Quando alguma norma é desobe-
decida, deve ser aplicada uma punição/sanção de acordo com
o regulamento da horta, podendo o hortelão responsável ser
expulso da parcela sob sua responsabilidade. A Figura 1 mostra
exemplos destas regras, discutidas em maior detalhe em[12].
Por exemplo, durante o uso da horta, o agente hortelão precisa
permissão junto a organização para “plantar árvores com ciclo
maior que dois anos”, que pode ou não ser autorizada e não
tem uma sanção como resultado. Por outro lado, tem-se a
norma “proibido vender produto cultivados na horta”, que é
considerada uma falta grave e se o hortelão acumular três faltas
graves, uma assembléia é convocada e é decidido por votação
dos hortelãos que possuem parcelas na HSJ se o “hortelão
infrator” permanece ou será expulso do projeto.

Fig. 1. Parte da tabela de normas da HSJ

III. A PLATAFORMA JACAMO E MSPP framework PARA
MODELAGEM DE ROTINAS DE PAPÉIS NA HSJ

No estudo realizado na Horta San Jerónimo (HSJ) foram
identificados alguns papéis, os quais possuem rotinas seguidas
periodicamente, ou seja, atividades realizadas pelos hortelãos
que se repetem em intervalos regulares. Na JaCaMo, a mo-
delagem de rotinas periódicas como estas não pode ser feita
facilmente, pois não há ferramentas nativas na plataforma
que permitam esta especificação. Atualmente, os processos
permitidos no sistema multiagente i.e. os objetivos que de-
vem ser atingidos, podem ser descritos por meio do modelo
MOISE+. Este modelo permite um bom nı́vel de abstração
para especificação destas unidades, bem como a definição
de uma hierarquia entre os mesmos. Entretanto, uma rotina
envolve a satisfação de objetivos periódicos (perı́odos de um

Santos, Rodrigues, Rodrigues, Dimuro, Adamatti, Dimuro and Jerez

74

mês, uma semana, um dia) e no modelo não há estruturas
para isto. Quando um objetivo é atingido ele é considerado
na dimensão Deôntica/Normativa como satisfeito, ou seja, não
gera objetivos de manutenção para que possa ser retomado
novamente de uma rotina periódica.

A satisfação destes objetivos estão relacionadas direta-
mente ao modelo Moise, ou seja, quando um objetivo é
atingido ele é considerado na dimensão Deôntica/Normativa
como satisfeito, ou seja, não gera objetivos de manutenção para
que possa ser retomado novamente de uma rotina periódica.

Em sistemas sociais, há também muitas situações onde
ocorre a aplicação de normas, que impõem sanções sob ações
realizadas pelos agentes. Na HSJ, foram identificadas diversas
ações normatizadas desta forma, como “vender produtos da
horta”, “utilização de mangueiras na regagem” e “uso de
produtos quı́micos no cultivo das hortas”.

Da mesma forma como não há estruturas na plataforma
para definição de periodicidades (de ações, de satisfação de
objetivos), não há meio para definir normas, seus atributos
básicos (nome, perı́odo, papel que a aplica) e as suas sanções.

Objetivando oferecer uma forma modular para descrição
de normas periódicas, de modo a facilitar a modelagem do
sistema social compreendido pela HSJ, utiliza-se framework
MSPP, que é implementado, não como extensão, mas como
complemento ao suporte da JaCaMo através do MOISE+
pela dimensão Deôntica/Normativa. O mesmo complementa o
modelo MOISE+, oferecendo mais uma camada de abstração.
Nela, rotinas são modeladas e sofrem ação de normas definidas
no framework, enquanto que em uma camada inferior, no
modelo MOISE+, são especificadas as ações normatizadas, e
que constituem as rotinas.

A. Jason

Jason é um interpretador para a linguagem AgentSpeak-
L e provê uma plataforma para desenvolvimento de sistemas
multiagentes, incluindo comunicação entre agentes baseada na
teoria dos atos de fala. Utilizando o SACI (Simple Agent Com-
munication Infrastructure), um SMA desenvolvido em Jason
pode ser distribuı́do em uma rede de computadores sem muito
esforço. Existem muitas implementações ad hoc de sistemas
BDI, contudo uma caracterı́stica importante do AgentSpeak-L
é sua fundamentação teórica. Outra caracterı́stica importante
do Jason em comparação com outros sistemas BDI é que
ele é implementado em Java (portanto multi-plataforma) e é
disponı́vel como Open Source sob a licença GNU LGPL [7].

B. CArtAgo

CArtAgo (Common ARTifact infrastructure for AGents
Open environments) é um framework para a programação e
execução de ambientes virtuais para sistemas multiagentes.
Através do framework CArtAgO é possı́vel implementar am-
bientes virtuais, onde implementa-se o ambiente como uma
camada computacional que encapsula as funcionalidades e os
serviços não-autônomos que os agentes podem explorar em
tempo de execução.

CartAgo é baseado no meta-modelo Agents & Artefacts
(A & A) [9] para modelar sistemas multiagentes. Este modelo
introduz uma metáfora de alto nı́vel retirada da ideia de

que humanos trabalham de forma cooperativa com o seu
ambiente: agentes são como entidades computacionais que
realizam algum tipo de tarefa orientada para alcançar um
objetivo (em analogia aos trabalhadores humanos), e artefatos
são como recursos e ferramentas dinamicamente construı́das,
manipuladas e compartilhadas pelos agentes para dar suporte
e realizarem suas atividades individuais e coletivas (como
artefatos no contexto humano).

Assim, é possı́vel desenvolver artefatos os quais são instan-
ciados no ambiente e podem prover serviços para os agentes,
podendo inclusive realizar uma comunicação com serviços ex-
ternos do tipo web-services, contribuindo para programação de
agentes. CArtAgo é uma tecnologia Open Source, disponı́vel
em [9], e inclui uma API baseada na linguagem Java para
programar os artefatos.

C. MOISE+

O modelo organizacional MOISE+ [11] foi desen-
volvido para modelar a organização de SMA e consiste na
especificação de três dimensões: a estrutural, onde definem-
se papéis e ligações de heranças e grupos; a funcional, onde
é estabelecido um conjunto de planos globais e missões para
que as metas sejam atingidas; e a deôntica, que é a dimensão
responsável pela definição de qual papel tem obrigação ou
permissão para realizar cada missão.

Assim, MOISE+ é um modelo de organização para sis-
temas multiagentes baseado em noções como papéis, grupos
e missões. Isso permite que o sistema tenha sua organização
explı́cita e que seja usada uma plataforma que faça os agentes
cumprirem com suas obrigações da organização.

A Especificação Funcional é constituı́da por um conjunto
de Esquemas Sociais (schemes sociais), que é um conjunto
de metas estruturado por meio de planos. Esquema Social: o
conjunto de todos os esquemas sociais é denotado por SCH
e um esquema sch é representado pela tupla sch = (G;P;M;
mo;nm) onde

• G é o conjunto de metas do ES sch ;

• P é o conjunto planos (constrói a árvore de
decomposição de metas);

• M é o conjunto de missões, ou seja, um conjunto
de metas globais que pode ser atribuı́do a um agente
através de um de seus papéis(ligam os agentes aos
planos);

• mo: M 7→ P (G) é uma função que determina o
conjunto de metas de cada missão;

• nm: M 7→ N × N determina o número (mı́nimo e
máximo) de agentes que devem se comprometer em
cada missão.

Um ES é uma árvore de decomposição de metas globais
onde a raiz é a meta do ES e a decomposição é feita por meio
de planos (denotados pelo operador =) que indicam uma forma
de satisfazer uma meta. Por exemplo, no plano g0 = g1, g2, g3,
a meta g0 é decomposta em três planos indicando que ela
será satisfeita somente se os planos g1, g2, g3 também serem
satisfeitos.

Integrating CartAgO Artifacts for the Simulation of the Social Production and Management of Urban

Ecosystems: the case of San Jerónimo Vegetable Garden of Seville, Spain

75

D. framework MSPP (Modelagem e Simulação de Polı́ticas
Públicas) framework

O framework MSPP (Modelagem e Simulação de Polı́ticas
Públicas) foi desenvolvido para modelagem e simulação de
polı́ticas públicas e conforme Seção IV (Artefatos Normativos)
foram feitas adaptações para o sistema da HSJ. O MSPP
concretiza-se no formato de artefatos no modelo CArtAgO
para modelar e projetar sistemas multiagente. Neste framework
estão incluı́dos dois tipos de artefatos normativos que são:
NormObrig e NormPrb, modelando normas de obrigação e
proibição, respectivamente.

Além dos artefatos, estão previamente inseridos agentes
para executar/verificar tais normas. São eles: o agente governa-
mental (responsável por emitir normas), os agentes sociais, que
estão submetidos às normatizações e buscam atingir objetos
próprios e os agentes governamentais detectores e/ou efetores,
responsáveis por detectar o cumprimento das normas de uma
polı́tica emitida pelo agente governamental, como também
regulamentar recursos do ambiente e aplicar possı́veis sanções
a ações que caracterizarem o descumprimento das normas.

O framework pressupõe adotar estes quatro tipos de agentes
interagindo para promover o ciclo de polı́tica, para que seja
criada uma polı́tica, que os agentes sociais como também os
governamentais tomem conhecimento desta e, por fim que
todos passem a ter seus objetivos orientados seguindo aquilo
que foi estipulado e de acordo com seus papéis. As normas
previamente inseridas estão estruturadas da seguinte maneira
em [14]:

• Id: o identificador da norma;

• Destinatário: especifica o papel ao qual a norma se
aplica;

• Ação: especifica uma ação a ser realizada pelo agente
que assume o papel ao qual a norma foi endereçada;

• Condição: especifica uma condição contextual
necessária para a aplicação da norma;

• Periodicidade: especifica o evento que deve ocorrer
(mês, semana, ou uma ação especı́fica) para que se
verifique a condição;

• Exceção: especifica uma condição na qual a norma
não se aplica;

• Sanção: especifica a sanção a ser aplicada no caso da
violação da norma.

Os agentes sociais e também os agentes efetuadores e
detectores estão constantemente observando as normas como
também tomam conhecimento de uma eventual modificação
ou exclusão delas do sistema. O conhecimento destes sobre
as normas é adicionado através de crenças onde se define que
uma ação qualquer é proibida, obrigatória, ou se necessita ser
obervado o estado atual da permissão ou se é resguardado o
direito de executá-la, como apresentado no estudo de caso da
HSJ. Uma vez cometida uma infração a essas normas, cabe
ao agente detector e/ou efetuador buscar junto ao artefato a
devida sanção e eventualmente aplicá-la. Os recursos públicos
disponı́veis no ambiente e até o mesmo devem estar disposto
também na forma de um artefato CArtAgO a fim de estabelecer
maior interação entre o sistema.

IV. CRIAÇÃO DOS ARTEFATOS PARA O ESTUDO DE CASO
DA HSJ

A proposta deste artigo é a integração entre diversos tipos
de Artefatos (Organizacionais, Normativos, de Comunicação
e Fı́sicos) para o domı́nio da HSJ. Nesta seção apresenta-
se um breve roteiro de criação dos Artefatos Normativos e
de Comunicação. Em seguida, mostra-se o uso dos artefatos
através de exemplos criados a partir das rotinas da HSJ.

Os Artefatos Organizacionais são os artefatos que fazem
a comunicação entre a organização definidas a partir do modelo
criado no MOISE+ [12] e a população de agentes. A integração
deste modelo com os outros componentes da plataforma Ja-
CaMo ocorre por meio de dois artefatos existentes por padrão
no framework CArtAgO: GroupBoard e SchemeBoard. Ambos
pertencem ao pacote ora4mas.nopl, contido na distribuição
padrão do framework.

Os Artefatos de Comunicação devem ter a função de
mediar à comunicação, ou seja, encaminhar mensagens aos
respectivos destinatários, fiscalizando a ordem de execução do
envio destas. Os Artefatos de Comunicação são divididos em
dois grupos [15]:

• artefatos de protocolo: são responsáveis pelo encapsu-
lamento da lógica de algum protocolo de comunicação
(tipo de comunicação que em geral é mais complexa);

• artefatos de atos de fala: executam atos de fala sim-
ples.

A comunicação é realizada através da invocação das operações
disponı́veis nos artefatos e após os procedimentos de
inicialização e criação dos artefatos, obrigatoriamente a
primeira ação que os agentes devem realizar é seu cadastro
nos artefatos, através da operação subscribe. Em seguida, é
necessária a execução da operação focus para cada artefato
em uso. Dessa forma o agente perceberá quaisquer mudanças
nas propriedades observáveis dos artefatos, mapeando-as para
sua base de crenças.

Finalmente, a comunicação se dará pela chamada às
operações disponı́veis nos artefatos, parametrizadas com os
identificadores da conversa(id), do agente destinatário, tipo de
mensagem, a mensagem e o remetente. Cada operação de envio
dispara um sinal, percebido pelo receptor. Isto lhe informa que
há uma mensagem nova, bem como quem a mandou e qual
o identificador da conversa. Os artefatos implementados no
projeto são: AcceptProposal, Agree, CallForProposals, Failure,
Inform, Message, Propose, Reject e Request. Contudo, para o
contexto da HSJ e os testes executados, os artefatos Request e
Inform tem suprido as necessidades do sistema até o presente.

Os Artefatos Normativos tem a função de demonstrar
como ocorrem as relações e interações entre os papéis com
relação às normas da HSJ e sendo esta uma organização social
baseada no cumprimento das normas que regulamentam os
comportamentos dos agentes, adaptou-se com alguns ajustes,
à tabela de normas demonstrada na Seção II aos parâmetros
do framework MSPP [14] descrito na Seção III, pois foram
identificados na tabela que regulamenta a HSJ, além dos tipos
de normas de obrigação e proibição, outras duas sendo elas
as normas de permissão e direito, as quais foram inseridas
ao framework com o objetivo de adequação ao sistema da

Santos, Rodrigues, Rodrigues, Dimuro, Adamatti, Dimuro and Jerez

76

Fig. 2. Diagrama Atividades Pagamento Mensalidade-HSJ

organização da HSJ que possui estas normas explicitas no
regulamento. A estrutura das normas implementadas mediante
a tabela segue a seguinte forma:

Norma (Id; Tipo de norma: obrigatório, proibido, direito ou
permissão; Ação; Sanção; Parâmetro de extensão da sanção).
Nota-se portando a adição do parâmetro de extensão da sanção,
isto pois as sanções previstas na HSJ estipulam que o agente
social pode ser penalizado com uma falta leve, falta grave
ou expulsão arbitrária, mas há casos em que as faltas são
cumulativas, e que havendo reincidência destas, num total
de três vezes é convocada uma assembleia para determinar a
continuação desse “infrator” no projeto. Também foi acrescen-
tado um parâmetro que informa o tipo de norma: obrigação,
proibição, direito ou permissão. É previsto que ao integrar
a estrutura organizacional implementada no MOISE+, seja
utilizado os demais parâmetros propostos no framework MSPP
: Destinatário e Periodicidade. Isto pois os agentes vão estar
condicionados a um papel e que este por sua vez possui rotinas
atreladas a periodicidade tais como “pagar mensalidade” por
exemplo.

Assim, um exemplo de norma aplicada a HSJ ficaria estru-
turada da seguinte forma: Norma (n22, Hortelão , Obrigação,
Pagar a Mensalidade, Mensal, Falta Grave, Cumulativa).

Os Artefatos Fı́sicos são abstrações sobre o ambiente,
simbolizando serviços e objetos fı́sicos que os agentes uti-
lizam para realizar suas tarefas. Estes artefatos são objetos do
ambiente implementados no Cartago como por exemplo: pá,
enxada, armário, semeadeira, parcela.

A Figura 2 mostra um exemplo de uso dos Artefatos
Fı́sico, Normativo e de Comunicação, onde um agente hortelão
durante o uso da horta, tem a “obrigação” (artefato normativo)
de efetuar o pagamento de mensalidade junto a secretaria
da organização e para isso “faz a solicitação” (artefato de
comunicação request) de um “recibo” (artefato fı́sico). A
secretaria recebe a solicitação e emite o recibo para o hortelão,
nesse momento é emitido um “inform” ao hortelão.

Fig. 3. Execução código no Jason - Uso de Artefatos HSJ

V. CENÁRIOS DE USO DOS ARTEFATOS NA HSJ

Nesta seção apresenta-se dois cenários de uso na HSJ, onde
agentes com papéis hortelão (é quem possui uma parcela de
cultivo na HSJ), implementados na plataforma Jason como
“ortolan” estabelecem comunicação com outros agentes, como
admin (quem verifica as ações do hortelão) e ong (agente que
cria artefatos normativos).

Os exemplos de cenários apresentados apenas testaram o
cumprimento ou não das normas, definido randomicamente.
Não existe uma comunicação direta entre os agentes para
cumprir ou não as normas, onde haja algum tipo de negociação.

A. Cenário de Uso 1

Inicialmente, conforme Figura 3 o agente para utilizar
o artefato deverá fazer sua inscrição no mesmo. Assim, os
agentes ortolan1, ortolan6, ortolan5 e admin executam a
operação focus sobre os artefatos e iniciarm a comunicação
através de funções incluı́das no artefatos de comunicação que
tem como parâmetros o identificador da conversa (id), o des-
tinatário e a mensagem. O agente ortolan1 através do artefato
de comunicação “request” (linha 1) faz uma solicitação para
“plantarArvores” para o agente admin, que envia uma resposta
de que é proibido com um artefato de comunicação “inform”
(linha 22). Uma outra comunicação é a do “ortolan5” (linha
7) que está usando um mensagem simples informando que
está executando a “limpezaHorta”, a qual não necessita uma
resposta do destinatário.

B. Cenário de Uso 2

Neste cenário conforme Figura 4 observa-se uma situação
da HSJ onde o hortelão (“ortolan7” - linha 1) ao descumprir
uma norma (artefato normativo) de proibição recebe como
sanção a penalidade de uma falta grave cumulativa (linha 16),
e após o registro de três faltas (linhas 13, 14 e 15) é convocada
a assembléia (linha 21) de decisão da permanência do mesmo
no projeto da HSJ. Após a votação pelos agentes “ortolan1,
ortolan3, ortolan5, ortolan4, ortolan2 e ortolan6 (linhas 22,
23, 34, 25, 26 e 27), se o agente tiver metade ou mais de votos
contra, o infrator é “expulso” (.kill agent).

VI. CONCLUSÃO E TRABALHOS FUTUROS

A plataforma JaCaMo possui recursos que a tornam uma
plataforma fully-fledged para modelagem de sistemas multia-
gentes, inclusive de sistemas sociais. Entretanto, para o estudo

Integrating CartAgO Artifacts for the Simulation of the Social Production and Management of Urban

Ecosystems: the case of San Jerónimo Vegetable Garden of Seville, Spain

77

Fig. 4. Execucao codigo no Jason - Uso de Artefatos HSJ

de caso deste artigo, pode-se observar limitações com relação
a modelagem de rotinas i.e. ações periódicas.

A especificação de rotinas não pode ser feita na Ja-
CaMo nativamente, fazendo necessário o uso de outro recurso.
Neste trabalho utilizou-se framework MSPP, que permitiu a
especificação das rotinas da horta, tornando-a modular como
os outros aspectos pertencentes a um SMA (organização,
população e ambiente, já tratados na JaCaMo). Ressalta-se que
as funcionalidades do framework MSSP vem a complementar
aquelas providas pelo modelo MOISE+ (componente da Ja-
CaMo), onde objetivos e ações podem ser descritos de forma
hierárquica, mantendo as ações no MOISE+ e a descrição das
periodicidades seriam feitas dentro do framework MSPP.

Por outro lado, pode-se explorar as facilidades providas
pelo framework CArtAgO para criar uma infraestrutura de
comunicação baseada em artefatos para a plataforma JaCaMo.
Os Artefatos de Comunicação abordados neste artigo tem o
objetivo de prover mais uma forma de comunicação para
a plataforma, permitindo assim que agentes programados
na linguagem AgentSpeak-L possam comunicar-se através de
protocolos ou por simples atos de fala de uma forma que
permita abstrair especificidades não relacionadas diretamente
à comunicação, tais como a linguagem de implementação dos
agentes e sua localização.

Assim, o presente artigo, apresentou os resultados prelim-
inares da implementação na plataforma JaCaMo, utilizando o
Jason e CArtAgO nesse primeiro momento, para demonstração
do uso de artefatos para o domı́nio da HSJ.

A proposta para trabalho futuro é a integração dos Artefatos
(Organizacionais, Normativos, de Comunicação e Fı́sicos) e o
ambiente para o domı́nio da HSJ através da plataforma Ja-
CaMo (Jason, CArtAgO e MOISE) e o framework MSPP, onde
pretende-se aplicar uma abordagem no cenário da simulação,
onde os artefatos estejam ligados ao ambiente e que cada papel
possa identificar nestes o que é necessário para a simulação da
atividade da horta. Ao final da integração, simular o ambiente
real da horta, e realizar a análise das ações no ambiente, com
os 4 tipos de artefatos.

ACKNOWLEDGMENT

This work was supported by CNPq (Proc. 560118/10-4,
305131/2010-9, 476234/2011-5) , FAPERGS (Proc. 11/0872-
3) and Projeto RS-SOC (FAPERGS Proc. 10/0049-7).

REFERENCES

[1] C. G. Lobo, Vivienda y Ciudad Posibles. Bogotá: Escala, 1998.
[2] E. Ortiz, “Derecho a la ciudad, producción social y gestión participativa

del hábitat. la promoción de iniciativas comunitarias incluyentes en
la ciudad de méxico,” Hábitat y Sociedad, vol. 1, pp. 55–70, 2010,
disponı́vel em http://habitatysociedad.us.es.

[3] V. Pelli, “La gestión de la producción social del hábitat,”
Hábitat y Sociedad, vol. 1, pp. 39–54, 2010, disponı́vel em
http://habitatysociedad.us.es.

[4] G. Romero, R. Mesı́as, M. Enet, R. Oliveras, L. Garcı́a, M. Coipel, and
D. Osorio, La participación en el diseño urbano y arquitectónico en
la producción social del hábitat. Mexico: CYTED-HABYTED-Red
XIV.F, 2004.

[5] J. Terradas, Ecologı́a urbana. Barcelona: Rubes Editorial, 2001.
[6] G. Dimuro and E. M. Jerez, “La comunidad como escala de trabajo

en los ecosistemas urbanos,” Revista Ciencia y Tecnologia, vol. 10, pp.
101–116, 2011.

[7] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with jacamo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747 – 761, 2013.

[8] R. H. Bordini, J. F. Hubner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. New Jersey: Wiley, 2007.

[9] A. Ricci, A. Santi, and M. Piunti, “CArtAgO (common atifact
infrastructure for agents open environments),” 2013. [Online].
Available: http://apice.unibo.it/xwiki/bin/view/CARTAGO/

[10] J. F. Hübner, “Um modelo de reorganização de sistemas multiagentes,”
Ph.D. dissertation, Universidade de São Paulo, São Paulo, 2003.

[11] J. F. Hübner, J. S. Sichman, and O. Boissier, “A model for the structural,
functional, and deontic specification of organizations in MAS,” in
Brazilian Symposium on Artificial Intelligence - SBIA 2002, Porto de
Galinhas, ser. LNAI, no. 2507. Berlin: Springer, 2002, pp. 118–128.

[12] F. C. P. Santos, G. Dimuro, T. F. Rodrigues, D. F. Adamatti, G. P.
Dimuro, and A. C. R. Costa, “Modelando a organização social de um
SMA para simulação dos processos de produção e gestão social de um
ecossistema urbano: o caso da Horta San Jerónimo da cidade de Sevilla,
Espanha,” in Anais do WESAAC 2012. Florianópolis: UFSC, 2012, pp.
93–104.

[13] F. C. P. Santos, T. F. Rodrigues, G. Dimuro, D. F. Adamatti, G. P.
Dimuro, A. C. R. Costa, and E. De Manuel Jerez, “Modeling role
interactions in a social organization for the simulation of the social
production and management of urban ecosystems: the case of San
Jerónimo vegetable garden of Seville, Spain,” in 2012 (BWSS). Los
Alamitos: IEEE, 2012, pp. 136–139.

[14] I. Santos and A. C. R. Rocha, “Toward a framework for simulating
agent-based models of public policy processes on the jason-cartago plat-
form,” in Proceedings of the Second International Workshop on Agent-
based Modeling for Policy Engineering in 20th European Conference on
Artificial Intelligence (ECAI)- AMPLE 2012. Berlin: Springer, 2012,
pp. 45–59.

[15] T. F. Rodrigues, A. C. R. Costa, and G. P. Dimuro, “A communication
infrastructure based on artifacts for the jacamo platform,” in Proceed-
ings of EMAS 2013 - 1st International Workshop on Engineering Multi-
Agent Systems at AAMAS 2013, M. Cossentino, A. E. F. Seghrouchni,
and M. Winikoff, Eds. Saint Paul: IFAMAS, 2013, pp. 1–15.

Santos, Rodrigues, Rodrigues, Dimuro, Adamatti, Dimuro and Jerez

78

A MAS for the Simulation of Normative Policies of
the Urban Vegetable Garden of San Jerónimo,

Seville, Spain

Henrique D. N. Rodrigues
Iverton Santos

Graçaliz P. Dimuro
Diana F. Adamatti

Universidade Federal do Rio Grande
Rio Grande, Rio Grande do Sul

Email: {henriquedonancio,iverton.santos,gracaliz,dianaada}@gmail.com

Glenda Dimuro
e Esteban de Manuel Jerez

Depto de Expresión Gráfica Arquitectónica
Universidad de Sevilla

Sevilha, Espanha

Abstract—This paper presents a multi-agent system for the
modeling and simulation of normative policies of the social
organization of the urban vegetable garden San Jerónimo, located
in Seville, Spain. For that, we developed an adapted version of
the framework MSPP for the Modeling and Simulation of Public
Policies, in order to be used in the modeling and simulation of
normative policies that are internal to a single social organization.

I. INTRODUÇÃO

Os Sistemas Multiagentes (SMA) oferecem ambientes
computacionais onde programas que possuem certo grau de
autonomia (agentes) interagem uns com os outros, no cumpri-
mento de objetivos particulares e coletivos. [1], [2]

Este trabalho é parte de um projeto que tem como objetivo
o desenvolvimento de ferramentas SMA para simulação de
processos de produção e gestão social de ecossistemas ur-
banos, em particular, o projeto social da Horta Urbana “San
Jerónimo”, localizada em Sevilha, Espanha, coordenado pela
ONG “Ecologistas en Acción”.

O projeto tem o intuito de fomentar a participação social
em práticas de agricultura orgânica. Atualmente os beneficia-
dos com este projeto são principalmente hortelãos aposentados,
alunos do ensino fundamental das escolas do bairro onde
está localizado o projeto e associações para experimentos
cientı́ficos. [3]–[5]

Os hortelãos, uma vez incluı́dos no projeto, têm direito
a utilização da parcela (área designada ao cultivo e manejo
da horta) por um prazo de dois anos prorrogáveis, desde que
cumpram as normas e regras estabelecidas no regulamento
definido pela ONG.

O regulamento da horta é um conjunto que conta um total
de quarenta normas que visa estabelecer melhor convı́vio entre
os usuários da horta e a administração, além de resguardar
seus direitos e orientar suas ações. Nele estão incluı́dos quatro
diferentes tipos de normas que são: as normas de direito,
que concedem ao agente o direito de determinada ação ser
executada sem que haja restrições e desde que não infrinja
outras normas , as normas de permissão as quais o agente

necessita requisitar junto a outros agentes a possibilidade de
executar a ação prevista, normas de obrigação que são aquelas
onde o agente é em determinado perı́odo obrigado a executar a
ação que nela consta e normas de proibição as quais restrigem
ações que os agentes possam vir a executar.

Em trabalhos anteriores do grupo de pesquisa, vários
aspectos relativos à modelagem da organização social da horta,
modelagem de rotinas dos papéis desta organização, modelos
especiais de agentes, dentre outros aspectos, foram introduzi-
dos. [6]–[8] Estes trabalhos foram desenvolvidos utilizando
as diversas ferramentas que integram a plataforma JaCaMo
(Jason, CArtAgO e MOISE+) [9].

Este artigo apresenta um SMA para simular as polı́ticas
internas ou normas regulamentares da organização social da
Horta San Jerónimo, utilizando a plataforma Jason [10], um in-
terpretador da linguagem AgentSpeak(L), baseada na arquite-
tura BDI [11], [12], juntamente com o framework CArtAgO
[13] e o framework para prover a simulação de polı́ticas
públicas MSPP (Modeling and Simulation of Public Policies)
[14], [15].

O framework MSPP é uma API para inserção de polı́ticas
públicas em um SMA que modela conjuntos de normas ori-
entadas a aplicação de proibições e obrigações. Nele estão
incluı́dos previamente agentes para execução, detecção e
efetuação de normas, além de planos para tratar eventos
relacionados. 1

O artigo está organizado como descrito a seguir: A Seção
2 apresenta uma sı́ntese sobre Sistemas Multiagentes, a lin-
guagem AgentSpeak(L), a plataforma Jason, o framework
CArtAgO e estrututa organizacional MOISE+. A Seção 3
aborda caracterı́sticas do framework MSPP adaptado para
inserção das polı́ticas normativas da organização. A Seção
4 apresenta a simulação da Horta San Jéronimo e sua
implementação com o framework MSPP. A Seção 5 apresenta
a conclusão e trabalhos futuros.

1Veja [16], para uma breve discussão sobre a diferença e relações entre
polı́ticas públicas e normas sociais.

A MAS for the Simulation of Normative Policies of the Urban Vegetable Garden of San Jerónimo, Seville,

Spain

79

II. SISTEMAS MULTIAGENTES E A PLATAFORMA
JACAMO

Os agentes, de acordo com [10], são capazes de sentir
o ambiente amplamente ou parcialmente e tomar ações que
possam modificá-lo. São dotados de certa autonomia para essas
ações, diferentemente de programas processuais, além de se
comunicarem e se organizarem, o que se pode chamar de
habilidade social.

Já os Sistemas Multiagentes (SMA) são ambientes habita-
dos por vários agentes que são capazes de interagir, tro-
car informações, são sensı́veis a percepções, se adaptam às
mudanças, tem conhecimentos sobre o ambiente (pleno ou
parcial) e podem tomar ações (coordenadas entre si ou não)
para modificá-lo dentro da chamada esfera de influência.

Os SMA podem ser classificados da seguinte forma: Sis-
temas Multiagentes Reativos e Sistemas Multiagentes Cogni-
tivos, sendo o último o modelo adotado neste trabalho.

Um aspecto que geralmente pode diferir um SMA cognitivo
de um reativo é o fato de o primeiro trabalhar usualmente com
poucos agentes, já no segundo costuma-se usar populações de
agentes, que podem alcançar a ordem dos milhares.

O que o caracteriza ser um SMA cognitivo é o fato dos
agentes possuı́rem crenças, percepções, comunicação, se orga-
nizarem em grupos, ter objetivos a serem alcançados, planos
para poder atingir tais objetivos, ou seja, interagem e possuem
conhecimentos e tem ações para modificar o ambiente.

O modelo de agente BDI (Believe, Desires and Intentions)
é caracterizado pelo aspecto cognitivo, apresentando crenças,
desejos e intenções. Crenças representam a informação que o
agente tem sobre outros agentes e sobre o ambiente, os desejos
expressam os objetivos que esse agente tenciona atingir, já as
intenções são metas que o agente se comprometeu a cumprir.

A plataforma JaCaMo [9] é um framework para
programação de Sistemas Multiagentes constituı́da de três
ferramentas (Jason, CArtAgO e MOISE+).

A. Jason

O Jason [10] é um interpretador da linguagem AgentS-
peak(L), baseada na arquitetura BDI. Quando se inicia a
simulação em Jason, o agente percebe e atualiza suas crenças,
isso significa atualizar tudo o que ele acredita ser verdade sobre
o ambiente através de suas percepções, consequentemente
gerando um evento, que por sua vez também pode desencadear
um plano.

Antes de um plano ser iniciado, precisa-se de um objetivo,
que pode ser tratado como fato desencadeador de um plano.
Pode-se, por exemplo, ter um objetivo do tipo “!viajar” (o
sı́mbolo de exclamação é usado em Jason para notação de
objetivo) que fará o agente atingir as etapas necessárias para
que isso se realize, ou seja, que o agente realize uma viagem.
O plano por sua vez é na verdade etapa(s) que o agente terá
que cumprir para concluir um objetivo.

Um aspecto a ressaltar é que os agentes podem trocar
mensagens entre si, podendo inclusive alterar a base de crença
de outro agente, criando assim planos a partir do conhecimento
adicionado por uma crença com informações enviadas por
outro agente.

B. CArtAgO

O framework CArtAgO (Common ARTifact infrastructure
for AGents Open environments) [13] é baseado no modelo
Agentes e Artefatos (A & A) para modelar e projetar Sistemas
Multiagente. Com essa ferramenta é possı́vel criar artefatos
estruturados em espaços abertos onde agentes podem se unir
de forma a trabalhar em conjunto. O ambiente como também
os recursos disponı́veis no mesmo podem ser modelados na
forma de um artefato CArtAgO como foram feitos no presente
trabalho.

C. Moise+

O modelo organizacional MOISE+ [17] é uma ferramenta
com intuito de modelar a organização de um SMA. Consiste
na especificação de três dimensões: a estrutural, onde definem-
se papéis e ligações de heranças e grupos; a funcional, onde
é estabelecido um conjunto de planos globais e missões para
que as metas sejam atingidas; e a deôntica, que é a dimensão
responsável pela definição de qual papel tem obrigação ou
permissão para realizar cada missão.

III. MODELAGEM E SIMULAÇÃO DE POLÍTICAS
PÚBLICAS

O framework MSPP [14], [15], utilizado neste trabalho,
adota como fundamentação conceitual de Polı́tica Pública, a
abordagem definida em [18], [19] a qual em termos gerais
aborda o conceito de Polı́ticas Pública como um conjunto
de ações para buscar soluções para problemas da sociedade,
orientando práticas e resguardando direitos a fim de atender as
demandas e garantindo o direito coletivo.

O processo de criação e aplicação de polı́ticas públicas
sequencial o qual esse framework se baseia é concebida como
uma sequência de etapas a serem realizadas, a cada momento,
por um dos diferente atores ou conjunto deles envolvidos no
processo. O ciclo de etapas é da seguinte forma [14]:

1. Identificação e formulação do problema a ser resolvido
através da emissão e implementação de uma polı́tica pública;

2. Formulação e análise comparativa das várias possı́veis
polı́ticas alternativas capazes de resolver o problema;

3. Escolha de uma das polı́ticas para a implementação
dessas;

4. Implementação da polı́tica pública escolhida;

5. Avaliação dos efeitos da implementação da polı́tica
pública, e eventual ajustamento da polı́tica, para melhorar os
resultados e reduzir os efeitos negativos (retornando assim o
processo para a etapa 1).

Destaca-se a preocupação dos idealizadores do framework
MSPP na limitação do modelo cı́clico na obtenção de modelos
que operam baseados em polı́ticas públicas.

O framework para inserção de polı́ticas públicas concretiza-
se no formato de artefatos no modelo CArtAgO. Estão in-
cluı́dos neste framework dois tipos de artefatos normativos que
são: NormObrig e NormPrb, modelando normas de obrigação
e proibição respectivamente. Além dos artefatos, estão previ-
amente inseridos agentes para executar/verificar tais normas.

Rodrigues , Santos, Dimuro, Dimuro, Adamatti, Jerez

80

São eles o agente governamental, responsável por emitir as nor-
mas, os agentes sociais que estão submetidos às normatizações
e buscam atingir objetivos próprios, e também os agentes
governamentais detectores/efetores responsáveis por detectar
o cumprimento das normas da polı́tica como também carac-
terı́sticas e recursos do ambiente, aplicar possı́veis sanções a
ações que caracterizarem o descumprimentos de normas e por
fim regularizar os recursos disponı́veis no ambiente.

O MSPP framework pressupõe adotar estes quatro tipos de
agentes interagindo para promover o ciclo de polı́tica.

As normas implementadas estão estruturadas da seguinte
maneira em [15]:

Id: o identificador da norma;

Destinatário: especifica o papel ao qual a norma se aplica;

Ação: especifica uma ação a ser realizada pelo agente que
assume o papel ao qual a norma foi endereçada;

Condição: especifica uma condição contextual necessária
para a aplicação da norma;

Periodicidade: especifica o evento que deve ocorrer (mês,
semana, ou uma ação especı́fica) para que se verifique a
condição;

Exceção: especifica uma condição na qual a norma não se
aplica;

Sanção: especifica a sanção a ser aplicada no caso da
violação da norma.

Os agentes sociais e também os agentes
efetuadores/detectores estão constantemente a observar
as normas como também tomam conhecimento de uma
eventual modificação ou exclusão delas do sistema. O
conhecimento destes sobre as normas é adicionado através de
crenças onde se define que uma ação qualquer é proibida,
obrigatória, ou se necessita ser observado o estado atual da
permissão ou é resguardado o direito de executá-la. Uma
vez cometida uma infração a essas normas, cabe ao agente
detector e efetuador buscar junto ao artefato a devida sanção.

Por último os recursos públicos disponı́veis no ambiente
e até o mesmo devem estar disposto também na forma de
um artefato CArtAgO a fim de estabelecer interação entre o
sistema.

IV. O MODELO: A HORTA SAN JERÓNIMO

A Horta San Jerónimo é um projeto social coordenado pela
ONG Ecologistas en Acción, na cidade de Sevilha, Espanha,
e foi escolhida para este trabalho por ter um regulamento
próprio que busca o melhor convı́vio e participação entre
os seus agentes, além de resguardar seus direitos e atribuir-
lhes restrições. Neste ambiente verificou-se também papéis e
suas respectivas rotinas, hierarquias, além da regulamentação
através de uma tabela de normas para implementação de uma
polı́tica [6] [7].

Nesse contexto, baseado em [15] foram identificados dentre
os papéis do projeto social caracterı́sticas que se adequam
aos papéis de agentes sociais, governamentais e também o
agente emissor de polı́ticas públicas, conforme explicado na
Seção 3. Os agentes sociais são entendidos como os hortelões,

Fig. 1: Parte da Tabela de Normas

Fig. 2: Interface gráfica da Horta San Jerónimo

responsáveis pelo cultivo de suas parcelas (espaço destinado
ao cultivo), já o agente emissor de polı́ticas é entendido a
ONG como um todo, e por último existem vários papéis
governamentais tais como técnicos e secretaria e para este
estudo englobou-se todos num único agente responsável pela
administração.

A tabela de normas dessa organização conta um total
de quarenta normas identificadas como tipos de proibição,
obrigação, direito e permissão de acordo com [6]. Essa tabela
regulamenta a entrada e saı́da de agentes do projeto, como
também impõe obrigações e restrições ao uso dos recursos
disponı́veis no ambiente, resguarda direitos e define quais
ações necessitam permissão para serem executadas.

A. O ambiente e sua visualização gráfica

O que chamamos de ambiente é um modelo na forma
de um artefato CArtAgO que nada mais é que um aninhado
de iterações simulando dias, meses e anos com condições
referentes a época de plantio, do crescimento e colheita das
hortaliças e aleatoriedade referentes ao clima. A cada evento
gerado, a horta notifica os hortelões que a observam por “sig-
nals” uma propriedade do CArtAgO para inserção de crenças
nos agentes. Quando isso acontece os hortelões adicionam essa
nova crença em suas bases que desencadeiam planos, estes
por sua vez são as ações que agentes governamentais devem
verificar e que fazem parte (ou não) da rotina dos agentes.

Para a visualização gráfica foi usado o artefato horta
integrando-o com propriedades do Java2D.

A MAS for the Simulation of Normative Policies of the Urban Vegetable Garden of San Jerónimo, Seville,

Spain

81

Fig. 3: O ciclo de ações e percepções dos agentes

A visualização gráfica permite observar o ciclo de cresci-
mento das hortaliças e sua colheita. Trata-se de um trabalho em
andamento e ainda escasso de recursos pois espera-se adicionar
mais elementos na simulação.

B. Utilizando o framework MSPP no caso da Horta San
Jerónimo

Verificou-se inicialmente que o framework MSPP poderia
atender as necessidades normativas para o estudo de caso da
Horta San Jerónimo, com exceção de algumas modificações.

A primeira é que foram identificados em [6] além dos tipos
de normas de proibição e obrigação outros dois sendo eles as
normas de direito e permissão para o caso. Normas de direito
seriam aquelas que concedem ao agente social poder pleno de
exercer aquela ação, sem haver restrições desde que não entre
em conflito com as demais. Já as normas de permissão são
aquelas que o agente necessita verificar o estado atual para
poder executá-la. Por exemplo, consta na tabela de normas
uma norma que determina que para o agente plantar árvores
que tenham um ciclo maior que o de dois anos ele precisa de
permissão.

Outra mudança foi o conteúdo que é passado para a criação
da norma, ficando da seguinte forma: Norma (Id; Tipo de
norma: obrigatório, proibido, direito ou permissão; Ação;
Sanção; Parâmetro de extensão da sanção). Dessa forma um
exemplo de norma seria:

Norma (n08, proibido, venderProdutos, faltaGrave, grave-
Cumulativa)

onde o agente ao vender produtos da horta que é uma
ação proibida, receberia como execução uma falta grave e
sua penalização seria o registro da mesma. Esse registro que
também é um artefato, já consta no framework e para esse
estudo de caso foi útil para convocar assembleias caso um
agente reincida em executar uma ação cuja sanção é uma
falta grave e cumulativa. Neste caso assumimos que sempre é
convocada uma assembleia para decidir a permanência desse
agente no sistema, onde os demais agentes se manifestam a
favor da absolvição e consequentemente a permanência do
hortelão, ou contrários optando pelo o afastamento, se metade
ou mais dos agentes decidir que não, então ele é expulso, caso
um empate aconteça é necessário a definição por parte de um
agente governamental.

Destaca-se a omissão dos parâmetros inicialmente propos-
tos pelo framework: Destinatário e Periodicidade. Estes dois
parâmetros não foram incluı́dos inicialmente pois espera-se
integrar funcionalidades disponı́veis no modelo organizacional
MOISE+ futuramente. Com a atribuição de papéis providas
pelo modelo organizacional, torna-se ampla a designação de
um destinatário. Já a periodicidade pelo mesmo motivo foi
omitida, pois uma vez que os agentes estejam condicionados
a papéis é possı́vel estabelecer rotinas aos mesmos.

Para fins de testes foram inseridos um total de seis agentes
com ações que explorassem funcionalidades chaves do MSPP
framework como também ações que constassem no regula-
mento da horta. Como já dito, temos o agente ONG (agente
governamental), o agente Admin (detector/efetuador), e as
agentes sociais que são: Ortolan, OrtolanPoor, OrtolanGood,
OrtolanLazy.

Para os agentes sociais foram atribuı́das ações distintas para
verificar a utilização dos quatro tipos de normas existentes (di-
reito, permissão, obrigação, proibição), como também sanções
cabı́veis e condições possı́veis.

Dessa forma consideramos o agente Ortolan neutro, po-
dendo eventualmente infringir uma norma. O OrtolanPoor foi
usado para tratar o caso de infração a uma norma proibida,
e que a sanção seja uma falta grave e cumulativa, também
foi usado normas que levassem a expulsão arbitrária. O Or-
tolanGood é aquele que jamais comete uma infração, sendo
possı́vel trabalhar com as normas de permissão e direito. Já o
OrtolanLazy é aquele que descumpre obrigações.

Vale ressaltar que normas de obrigação muitas vezes são
interpretadas como um caso de proibição. Por exemplo, é
obrigação do agente social “pagar a mensalidade”, e caso isso
seja descumprido há uma sanção prevista.

Uma ressalva a se fazer é o modo como o framework
identifica um infrator. Nos exemplos de implementação vistos
o artefato que simula o ambiente envia um “signal”, e este
por sua vez é acompanhado de um método proveniente do
CArtAgO chamado getOpUserName que retorna o nome do
agente que recebeu esse sinal. Já neste trabalho preferiu-se
adotar outro método para a identificação das ações através
da comunicação, ou seja, tudo o que o agente social faz ele
comunica ao agente governamental responsável.

V. CONCLUSÃO

Este artigo apresenta um SMA para simular as polı́ticas
internas ou normas regulamentares da organização social da
Horta San Jerónimo, utilizando a plataforma Jason juntamente
com o framework CArtAgO e o framework para prover a
simulação de polı́ticas públicas MSPP (Modeling and Sim-
ulation of Public Policies).

Esperava-se que as normas previstas na Horta San Jerónimo
pudessem ser modeladas e os agentes sejam estes sociais ou
governamentais interagissem estando regidos por elas, podendo
haver objetivos pessoais maiores que o cumprimento restrito
destas normas e nesse caso que fosse identificado tal compor-
tamento.

Observou-se que o framework MSPP atendeu as necessi-
dades de modelagem de polı́ticas normativas internas de um

Rodrigues , Santos, Dimuro, Dimuro, Adamatti, Jerez

82

sistema real, no caso o projeto social da Horta San Jerónimo.
Tanto o ciclo de uma polı́tica adotado, quanto os agentes
previstos para realizá-lo foram identificados no estudo de caso
provendo resultados satisfatórios. No entanto foi necessária
algumas modificações e adições a esta ferramenta para atender
as necessidades desta modelagem como a criação dos artefatos
normativos de direito e permissão, além da adequação dos
parâmetros que constituem as normas.

Outro fator relevante foi a implementação do framework ter
se dado como um artefato CArtAgO, proporcionando interação
entre agentes e artefatos, artefatos e artefatos e artefatos e
classes Java.

Ressalta-se a fácil adaptação tanto dos artefatos normativos
quanto dos agentes previamente inseridos. Espera-se a partir
desse trabalho torná-lo mais amplo e detalhista, inserindo
novos recursos para que a simulação esteja mais próximo do
modelo que a inspira.

A partir desse trabalho pretende-se ampliar o sistema a
fim de verificar todas as ações com base à tabela de normas
e consequentemente aumentar o ciclo de rotina dos agentes.
Também se espera integrar o MOISE+ onde o modelo or-
ganizacional da Horta San Jerónimo já está explicitado em
[6], a fim de criar um sistema aberto, onde agentes possam
entrar e sair assumindo papéis definidos no modelo orga-
nizacional como também suas rotinas estejam previamente
estipuladas. Ainda utilizando-se do modelo organizacional
e também das hierarquias nele estabelecidas, serão usados
artefatos de comunicação previstos em [8] como uma alter-
nativa a comunicação.

ACKNOWLEDGMENT

This work was supported by CNPq (Proc. 560118/10-4,
305131/2010-9, 476234/2011-5) , FAPERGS (Proc. 11/0872-
3) and Projeto RS-SOC (FAPERGS Proc. 10/0049-7).

REFERENCES

[1] Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley,
Chichester (2002)

[2] Singh, M.P., Rao, A.S., Georgeff, M.P.: Formal methods in DAI:
Logic-based representation and reasoning. In Weiss, G., ed.: Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence. The
MIT Press, Cambridge (1999) 331–376

[3] Dimuro, G., Jerez, E.M.: La comunidad como escala de trabajo en los
ecosistemas urbanos. Revista Ciencia y Tecnologı́a 10 (2011) 101–116

[4] Dimuro, G.: Sistemas urbanos: el estado de la cuestión y los ecosistemas
como laboratorio. Arquitextos 124 (2010) 11

[5] Dimuro, G., Jerez, E.M.: Comunidades en transición: Hacia otras
prácticas sostenibles en los ecosistemas urbanos. Cidades Comunidades
e Territórios 20-21 (2010) 87–95

[6] Santos F.C.P., Rodrigues, T.D.G.A.D.D.G.R.A.e.J.E.M.: Modelando
organização social de um sma para simulação dos processos de
produção e gestão social de um ecossistema urbano: o caso da horta
san jerónimo da cidade de sevilla, espanha. In H J.F., ed.: VI
Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações
- WESAAC 2012, FLORIANÓPOLIS, UFSC (2012) 93–104

[7] Santos, I., Rodrigues, T.F., Dimuro, G.P., Costa, A.C.R., Dimuro, G.,
Manuel, E.: Towards the modeling of the social organization of an
experiment of social management of urban vegetable gardens. In Lugo,
G., Hübner, J., eds.: 2011 Workshop and School of Agent Systems, their
Environment and Applications (WESAAC) Proceedings, Los Alamitos,
IEEE (2012) 98–101

[8] Rodrigues, T.F., Costa, A.C.R., Dimuro, G.P.: A communication
infrastructure based on artifacts for the jacamo platform. In Cossentino,
M., Seghrouchni, A.E.F., Winikoff, M., eds.: Proceedings of EMAS
2013 - 1st International Workshop on Engineering Multi-Agent Systems
at AAMAS 2013, Saint Paul, IFAMAS (2013) 1–15

[9] Bordini, R.H., Hübner, J.F.: (JaCaMo project) Available at
http://jacamo.sourceforge.net/, accessed in September 2012.

[10] Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley, New Jersey (2007)

[11] Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical com-
putable language. In van Hoe, R., ed.: Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World. Volume 1038
of LNCS. Springer, Berlin (1996) 42–55

[12] Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents.
In Nebel, B., Rich, C., Swartout, W.R., eds.: Proceedings of the 3rd In-
ternational Conference on Principles of Knowledge Representation and
Reasoning (KR’92), Cambridge, MA, October 25–29, 1992, Morgan
Kaufmann (1992) 439–449

[13] Ricci, A., Santi, A., Piunti, M.: CArtAgO (common atifact infrastructure
for agents open environments) (2013)

[14] Santos, I., Rocha, A.C.R.: Toward a framework for simulating agent-
based models of public policy processes on the jason-cartago platform.
In: Proceedings of the Second International Workshop on Agent-based
Modeling for Policy Engineering in 20th European Conference on
Artificial Intelligence (ECAI)- AMPLE 2012, Berlin, Springer (2012)
45–59

[15] Santos, I. A. S., M.F.P.C.A.C.R.e.D.G.P.: Um framework para simulação
de polı́ticas públicas aplicado ao caso da piracema, sob o olhar da teoria
dos jogos. In: Anais do IX Encontro Nacional de Inteligência Artificial.
(2012)

[16] Young, H.P.: Social norms and public policy (2007)
[17] Hübner, J.F.: Um Modelo de Reorganização de Sistemas Multiagentes.

PhD thesis, Universidade de São Paulo, São Paulo (2003)
[18] Hill, M.: The Public Policy Process. 4th edn. Pearson Longman (2004)
[19] Easton, D.: A Framework for Political Analysis. Prentice-Hall (1965)

A MAS for the Simulation of Normative Policies of the Urban Vegetable Garden of San Jerónimo, Seville,

Spain

83

TrustE - An Emotional Trust Model for Agents
Guilherme K. Bitencourt

Departamento de Informática
e Estatı́stica

Universidade Federal
de Santa Catarina

Email: bitencourt@inf.ufsc.br

Ricardo A. Silveira
Departamento de Informática

e Estatı́stica
Universidade Federal

de Santa Catarina
Email: silveira@inf.ufsc.br

Jerusa Marchi
Departamento de Informática

e Estatı́stica
Universidade Federal

de Santa Catarina
Email: jerusa@inf.ufsc.br

Abstract—Trust and Reputation has been proposed in the
Multiagent System area as a way for assisting agents to select
good partners in order to increese the well successed interactions
between agents. As well as trust, agent emotions has been
studied with the intention to turn actions and reactions of
the agents more human like. In this paper, we present a
trust emotional based model. This proposal is an hibrid model
that congregates a mathematical and a symbolical models for
capturing the complexity of the reasoning. Quantitative and
qualitative evalutations are mixed throught the incorporation of
some emotional flavors in the trust evaluation.

I. INTRODUÇÃO

O estudo e modelagem da confiança tem atraı́do o interesse
de pesquisadores em diversas áreas, tais como psicologia,
sociologia, filosofia e economia, e possui grande importância
nas relações sociais e comerciais [1]. Em Ciências da
Computação esse interesse ocorre principalmente nos Sistemas
Multiagente (SMA).

Sistemas Multiagente Abertos podem receber novos agentes
a qualquer momento. Esta caracterı́stica torna difı́cil, para
um agente, verificar se outro recém ingressado no sistema é
confiável, pois não existem informações suficientes referentes
ao novo agente. Para amenizar essa dificuldade, vários
modelos de confiança e reputação vem sendo desenvolvidos
na área [2]–[4]. Considerando que os sistemas computacionais
estão se tornando sistemas de larga escala, abertos, dinâmicos
e distribuı́dos, contendo uma grande quantidade de agentes
que agem por interesse próprio [3], a utilização da confiança
a da reputação nesses sistemas torna-se fundamental para que
haja uma efetiva interação entre os agentes [5].

Contudo, a maioria dos modelos de confiança e reputação
existentes possui um enfoque essencialmente matemático [6],
não levando em consideração a complexidade presente na
maneira como nós, humanos, confiamos ou não uns nos
outros. Para nós, as emoções influenciam diretamente o ato
de confiar. Isto, de certa forma, impõe um caráter subjetivo
à avaliação da confiança. Além disso, os modelos propostos
na literatura, determinam, através de pesos arbitrários e/ou
dependentes de funções, a relevância das informações,
oriundas de outros agentes, utilizadas no cálculo de confiança
pelo agente avaliador. Esse fato torna parte da ação de
confiar independente do comportamento do agente e portanto
dissociada do contexto no qual o agente está inserido.

Neste trabalho, é proposto o modelo TrustE de confiança
que utiliza informações de natureza simbólica, que estão
relacionadas diretamente com o contexto no qual o agente está
inserido. Tais informações compõem sensações ou emoções
que possibilitam ao agente associar às avaliações quantitativas
ou racionais, avaliações qualitativas ou subjetivas, que são
fruto da introspecção das situações vividas pelo agente.

O artigo está organizado da seguinte forma: na seção II,
são apresentados os conceitos de confiança e reputação entre
agentes. Na seção III será introduzido o conceito de emoções
em agentes, apresentando o modelo OCC. O modelo proposto
é apresentado na seção IV. Por fim, a seção V apresenta as
considerações finais.

II. MODELOS DE CONFIANÇA

Os modelos de confiança existentes podem ser divididos
em dois grupos: modelos baseados em confiança e modelos
baseados em reputação. Embora os termos confiança e
reputação possam se confundir, a principal diferença entre eles
está na origem da informação. A confiança está relacionada a
uma relação direta entre dois agentes a e b, e é gerada através
de experiências e interações ocorridas entre eles. Portanto a
ação de um agente a confiar ou não em um agente b depende
somente da análise dessas interações pelo agente a (a origem
da informação é o próprio agente a), não sendo considerada
a reputação de b. A reputação, por sua vez, é uma confiança
socializada (a origem da informação são os outros agentes),
que são transmitidas entre os agentes, possibilitando que a
confie em b, sem a necessidade de ambos terem tido alguma
interação direta no passado. Assim, a reputação de um agente
se constrói a partir de informações provenientes de vários
agentes, e através dela, o agente é capaz de decidir se confia
ou não em um outro agente [6].

São vários os modelos de confiança e reputação encontrados
na literatura, dentre os quais destacam-se: o modelo de Marsh
[7], que considera apenas a confiança de cada agente; o
modelo SPORA [8], que considera somente a reputação dos
agentes; os modelos REGRET [2], Referral Network [9] e
TRAVOS [3] que levam em consideração tanto a confiança
quanto a reputação, combinando esses valores para chegar a
um resultado; e finalmente o modelo FIRE [5], que introduz
dois conceitos adicionais, a confiança baseada em papéis e

TrustE - An Emotional Trust Model for Agents

85

a reputação certificada. A seguir, apresenta-se uma descrição
sucinta destes modelos.

A. Modelo de Marsh

O modelo proposto por [7] foi um dos primeiros modelos
desenvolvidos sobre confiança local (considera apenas a
interação direta entre agentes para medir a confiança). Sua
arquitetura é distribuı́da, uma vez que, cada agente é o
responsável pelo cálculo da sua confiança perante os outros
agentes.

Ele diferencia três tipos de confiança: confiança básica
- representa a disposição de um agente confiar em outro;
confiança geral - a confiança que um agente exerce sobre outro
sem levar em conta qualquer situação especı́fica; e confiança
situacional - a confiança que um agente tem em relação a
outro, levando em consideração uma situação especı́fica.

Esse modelo, por levar em consideração apenas a confiança
local (direta) entre agentes, é limitado em relação a capacidade
de calcular a confiança quando os agentes nunca interagiram
entre si. No entanto, sua citação é importante devido ao seu
pioneirismo na área e a sua definição de confiança direta entre
agentes.

B. TRAVOS

O modelo de confiança e reputação TRAVOS [3] foi
desenvolvido para ser utilizado, principalmente, em SMA
abertos e assume que o comportamento dos agentes não
mudam com o tempo, no entanto, essa hipótese nem sempre
é verdadeira. A sua principal caracterı́stica - que também
está presente nos modelos REGRET [2] e FIRE [5] - é
a possibilidade de um agente avaliar a confiança em outro
agente de forma direta, através de experiências passadas, ou
através da reputação, quando tais experiências não existirem
ou forem insuficientes. Ao estabelecer a confiança em outros
agentes e escolher aquele que é mais confiável, o agente
tem a capacidade de maximizar a probabilidade de que sua
interação seja bem sucedida. Outra caracterı́stica presente é
a possibilidade de filtrar as opiniões imprecisas de outros
agentes, permitindo que a reputação seja utilizada para
aumentar significativamente o desempenho do sistema, já que
as informações indesejáveis serão descartadas.

Neste modelo, um agente atr (truster) possui dois métodos
para calcular a confiança em outro agente ate (trustee) em um
contexto especı́fico. Primeiramente o agente atr faz a avaliação
baseado nas interações diretas com o agente ate, depois o
agente atr avalia a confiabilidade de ate através da reputação
de ate.

A reputação é necessária quando um agente atr quer fazer
uma avaliação sobre o comportamento de um agente ate, e
possui poucas informações sobre ele ou a confiança entre
ambos possui uma baixa confiabilidade. Assim, a reputação
pode aumentar a precisão da confiabilidade do valor de
confiança que atr tem em ate, auxiliando atr na sua tomada
de decisão.

A confiança é modelada através de uma abordagem
probabilı́stica, baseada nas experiências passadas de um agente

sendo avaliado. Se um agente avaliador (atr), tem todas as
informações sobre o agente sendo avaliado (ate), então, de
acordo com atr, a probabilidade de ate cumprir com suas
obrigações é expressa por Batr,ate . Contudo, normalmente não
se tem toda a informação necessária sobre ate, logo, o melhor
caminho a seguir é utilizar o valor esperado de Batr,ate

dado o
conhecimento (conjunto de todos os resultados das interações
observadas) de atr.

C. FIRE

O modelo FIRE, proposto por [5], é um modelo de
confiança e reputação integrado, com uma arquitetura de
tomada de decisão distribuı́da entre os agentes, semelhante ao
modelo REGRET [2]. Este modelo incorpora quatro fontes
de informação: confiança por interação, reputação baseada
em testemunho, confiança baseada em papéis e reputação
certificada, as quais são combinadas para fornecer uma métrica
de confiança em praticamente todas as circunstâncias. Essa
variedade de fontes torna-se importante, visto que, em várias
situações nem todas estarão prontamente disponı́veis, além de
permitir aos agentes combiná-las para lidar com as incertezas
do ambiente.

D. REGRET

Neste modelo, a reputação é vista como uma opinião ou
visão de um agente sobre algo, sendo formada e atualizada
ao longo do tempo através das interações com os outros
agentes do sistema. As interações fornecem como resultado
impressões que são registradas pelos agentes e refletem como
eles avaliam suas experiências com outros agentes, de acordo
com o resultado de um diálogo (contrato inicial que estabelece
os termos e condições de uma transação) firmado entre os
agentes. Como cada agente possuiu uma opinião diferente dos
demais, pode-se dizer que a reputação assume um caráter mais
subjetivo.

Um resultado, ob, de um diálogo relacionado a uma
transação comercial, entre dois agentes a e b, do ponto de
vista do agente comprador b, poderia ser:

ob = (DataEntrega =c 10/02 ∧ Preco =c

2000∧Qualidade =c A∧DataEntrega = 15/02∧Preco =
2000 ∧Qualidade = C)

Nesse exemplo, as variáveis com o subscrito c representam
o acordo inicial entre ambos os agentes. Assim o agente b
esperava um produto com qualidade A (boa) porém recebeu
um produto de qualidade C (ruim), além de ter recebido o
produto com 5 dias de atraso.

O modelo utiliza o termo Reputação Individual (RI) para
representar a confiança direta entre dois agentes, e Reputação
Social (RS) para representar a reputação propriamente dita.
A abordagem descentralizada implementada por este modelo
permite a cada agente calcular a RI e a RS de outro agente,
podendo utilizar ambas ou apenas uma delas para se chegar a
um resultado final.

Bitencourt, Silveira and Marchi

86

A RS leva em consideração três fontes de informação: a
interação do agente a (avaliador) com os membros do grupo
que o agente b (avaliado) pertence, expressa por Ra→B(ϕ),
equação 1. O que os membros do grupo A (o grupo do agente
a) pensam sobre o agente b, expressa por RA→b(ϕ), equação
2. E o que os membros do grupo A pensam sobre o outro
grupo B, expressa por RA→B(ϕ), equação 3.

Ra→B(ϕ) =
∑

bi∈B
ωabi .Ra→bi(ϕ) (1)

RA→b(ϕ) =
∑

ai∈A
ωaib.Rai→b(ϕ) (2)

RA→B(ϕ) =
∑

ai∈A
ωaiB .Rai→B(ϕ) (3)

Esses 3 valores provenientes dessas fontes de informação
são combinados com a RI do agente, denotada por Ra→b(ϕ),
para se chegar ao valor final de confiança, representado por
SRa→b(ϕ), equação 4.

SRa→b(ϕ) = ξab.Ra→b(ϕ) + ξaB .Ra→B(ϕ)+

ξAb.RA→b(ϕ) + ξAB .RA→B(ϕ) (4)

onde ξab+ξaB +ξAb+ξAB = 1, e representam a importância
de cada uma das fontes de informação para o agente avaliador,
sendo essa decisão dependente de aplicação.

As caracterı́sticas deste modelo permitem que à ele sejam
incorporadas avaliações simbólicas, na forma de emoções. Na
seção seguinte é apresentado um modelo de emoções para
agentes, que conjuntamente ao modelo REGRET, forma a base
para a proposta do modelo TrustE.

III. EMOÇÕES EM AGENTES

O estudo das emoções está presente em várias disciplinas
como psicologia, economia, neurociência cognitiva, e nos
últimos anos esse estudo também está presente nas pesquisas
em IA e Ciência da Computação. Tal estudo visa a criação
de sistemas de interação emocional, como por exemplo,
robôs com comportamento emocional e agentes virtuais para
entretenimento [10].

O modelo psicológico de emoções, conhecido como
OCC, proposto por [11], tem ganhado popularidade entre
pesquisadores que desenvolvem sistemas de raciocı́nio sobre
emoções ou que incorporam emoções em agentes artificias. O
modelo classifica 22 tipos de emoções, sendo metade destas
positivas (ex.: alegria e esperança) e metade negativas (ex.:
tristeza e medo). Duas das emoções descritas no modelo OCC
são:
• ALEGRIA - satisfeito em relação a um evento

desejável;
• MEDO - insatisfeito em relação a um evento

indesejável.
Há uma relação de temporalidade nas emoções, enquanto a

ALEGRIA está relacionada a algo que está acontecendo, o
MEDO refere-se a algo que poderá acontecer.

Quanto aos aspectos quantitativos das emoções, estes são
descritos no modelo OCC em termos de potencialidades,
limiares e intensidades. Para cada uma das 22 emoções, é
fornecida uma lista de variáveis que afetam a intensidade da
emoção e quais as condições necessárias para que a emoção
ocorra.

Assim, intensidade de uma emoção é definida subtraindo-
se o limiar de seu potencial. O modelo OCC não especifica
como são calculados os limiares das emoções, porém acredita-
se que eles dependam de variáveis globais que indicam o
humor do agente [12]. Por exemplo, se um agente está de
bom humor, os limiares das emoções negativas aumentam,
causando uma diminuição na intensidade dessa emoções.
Quando uma condição necessária para disparar uma emoção
ocorre, mas o seu potencial está abaixo do seu limiar, um
agente pode reconhecer que essa emoção foi desencadeada
porém ela não o afetará. Por exemplo, ”o humor de um agente
estava tão bom que mesmo ele tendo praticado uma ação ruim,
ele não foi afetado pela vergonha”.

Para cada emoção, são necessárias 3 funções para o calculo
da intensidade. São elas: função de potencialidade, função
do limiar e função de intensidade. A maneira como essas 3
funções são calculados é dependente de aplicação, porém, de
um modo geral, a função de intensidade de uma emoção,
denotada por I(P (E), L(E), t), que por simplificação será
representada por I(E), pode ser declarada como:

I(P (E), L(E), t) → R+ (5)

onde o parâmetro P (E) representa a função de potencialidade
da emoção E, L(E) a função do limiar de E, e t o tempo
corrente. Como resultado, a função retorna um real positivo,
incluindo 0 (zero), que representa, de forma quantitativa,
a intensidade da emoção. Segundo [12], o valor de I(E)
persiste ao longo do tempo, e tende a diminuir com o passar
dele, diferentemente dos valores de P (E) e L(E) que são
recalculados a cada vez que E é disparada novamente, portanto
esses valores não persistem com o passar do tempo. Para
suportar a temporalidade da intensidade cada agente deve
possuir uma memória (MEA) que armazene os valores de cada
uma das emoções sentidas por ele.

A. Nova hierarquia de emoções

Contudo, para que as emoções possam ser utilizadas em
agentes inteligentes é necessário formalizá-las, possibilitando
a sua implementação. Steunebrink et al. [13] propuseram
uma revisão do modelo OCC, visando adequar o modelo
a implementações computacionais. Neste trabalho são
identificadas as ambiguidades existentes na estrutura lógica
do OCC e são propostas alterações, conduzindo o modelo
a uma estrutura baseada em herança (Figura 1), suportada
por uma nova estrutura lógica, e novas especificações dos
tipos de emoções. A partir dessas alterações, as 22 emoções
do modelo OCC foram formalizadas, criando-se um modelo
qualitativo de emoções, descrevendo precisamente quando as
emoções são desencadeadas [14].

TrustE - An Emotional Trust Model for Agents

87

Figure 1. Hierarquia baseada em herança de emoções do modelo OCC
modificado [13]

As principais alterações na estrutura do modelo foram: a
introdução de herança explı́cita na composição hierárquica das
emoções; o uso de rótulos em cada ponto da hierarquia e
definição de nós filhos como superconjunto dos nós pais. A
partir dessa nova estrutura foram criada novas especificações
dos tipos de emoções, conforme a figura 2. Tais modificações
possibilitam uma melhor avaliação das emoções pois torna
o modelo mais formal e com uma maior linearidade na
composição das emoções.

Como pode ser visto nas figuras 1 e 2, as
emoções SATISFEITO (”PLEASED”), INSATISFEITO
(”DISPLEASED”), APROVAÇÃO (”APPROVING”),
DESAPROVAÇÃO (”DISAPPROVING”), GOSTO
(”LIKING”) e DESGOSTO (”DISLIKING”) que no modelo
original OCC fazem parte do processo de avaliação e não
representam uma emoção propriamente dita, na alteração
proposta por Steunebrink et al. [13], esses sentimentos são
tratados como emoções e são a base para todas as outras
emoções. A diferença entre a ALEGRIA e ESPERANÇA,
por exemplo, é que a ALEGRIA está relacionada a
uma consequência que está ou já aconteceu, enquanto a
ESPERANÇA está relacionada a uma consequência que
poderá acontecer. O mesmo raciocı́nio vale para TRISTEZA
e MEDO. Por exemplo, ”O homem estava alegre porque seu
time ganhou e tinha esperança de ver seu time ser campeão
ao final do campeonato”.

Figure 2. Especificações dos tipos de emoções do modelo OCC modificado
[13]

IV. TRUSTE: UM MODELO DE CONFIANÇA BASEADO EM
EMOÇÕES

O modelo TrustE, proposta deste trabalho, agrega emoções
ao cálculo da confiança e da reputação em agentes. Todos
os modelos encontrados na literatura fazem uso de análise
algébrica para determinar o ato de confiar, o que torna
tais modelos essencialmente matemáticos e desconectados
do histórico de agente. A proposta do modelo TrustE é
permear o modelo de confiança com avaliações oriundas de
raciocı́nio simbólico, tornando o ato de confiar mais dinâmico
e dependente do histórico do agente.

A incorporação de emoções pode ser feita de várias
formas, contudo optou-se por incorporar ao modelo REGRET,
fatores emocionais, baseados nas intensidades das emoções
do agente. Assim, os pesos definidos pelo programador, ξ
e ω das equações do modelo REGRET (Subseção II-D) são
substituı́dos por sı́mbolos emocionais.

A. Formalização das emoções no TrustE

Embora o modelo OCC defina 22 tipos de emoções,
para implementação do modelo TrustE foram utilizadas 4
tipos de emoções, ALEGRIA, TRISTEZA, ADMIRAÇÃO e
DESCONSIDERAÇÃO. Forem escolhidas essas emoções pois
as duas primeiras representam um tipo de emoção que não
está ligada diretamente a ação de outro agente (ex. O agente
estava feliz por ter atingido seus objetivos), enquanto as duas
últimas são emoções ligadas a atitude de um determinado
agente em relação a outro (ex. O agente comprador admirou
a honestidade do agente vendedor). A seguir serão dadas
algumas definições necessárias para a formalização dessas 4
emoções.
• Sejam a e b agentes, X um evento, Y uma ação.
• Se a confia em b então CONFa(b) senão ¬CONFa(b).
• POSa(Y) - uma ação Y positiva realizada por a.

Bitencourt, Silveira and Marchi

88

• NEGa(Y) - uma ação Y negativa realizada por a.
• EV ENT (X) - um evento (fato) X já realizado.
• SATa(X) - a SATISFACAO de a em relação a

consequência de EV ENT (X).
• ¬SATa(X) - a INSATISFACAO de a em relação a

consequência de EV ENT (X).
• APa(Y, b) - a APROV ACAO de a em relação a uma

ação Y de b. O agente a irá ter uma reação positiva
em relação a Y , quando b realizar uma ação positiva do
ponto de vista do agente a.

APa(Y, b) ↔ POSb(Y) ∧ ¬NEGb(Y) (6)

• DESa(Y, b) - a DESAPROV ACAO de a em relação a
uma ação Y de b. O agente a irá ter uma reação negativa
em relação a Y , quando b realizar uma ação negativa do
ponto de vista do agente a.

DESa(Y, b) ↔ NEGb(Y) ∧ ¬POSb(Y) (7)

Logo será admitido que APa(Y, b) ↔ ¬DESa(Y, b). Assim
será utilizado a notação APa(Y, b) para APROV ACAO e
¬APa(Y, b) para DESAPROV ACAO.

A formalização e a condição de ocorrência de cada uma das
4 emoções são descritas a seguir:

Sendo ADMa(Y, b) a ADMIRACAO de a em relação a
uma ação Y realizada por b. O agente a irá ADMIRAR Y ,
quando a APROVAR Y .

ADMa(Y, b) ↔ APa(Y, b) (8)

Sendo DESa(Y, b) a DESCONSIDERACAO de a em
relação a uma ação Y realizada por b. O agente a irá
DESCONSIDERAR Y , quando a REPROVAR Y .

DESa(Y, b) ↔ ¬APa(Y, b) (9)

Sendo ALa(X) o sentimento de ALEGRIA do agente a
em relação a consequência atual de um evento X . O agente a
irá sentir-se ALEGRE quando ficar SATISFEITO em relação
a X .

ALa(X) ↔ SATa(X) ∧ EV ENT (X) (10)

Sendo TRa(X) o sentimento de TRISTEZA do agente a
em relação a consequência atual de um evento X . O agente a
irá sentir-se TRISTE quando ficar INSATISFEITO em relação
a X .

TRa(X) ↔ ¬SATa(X) ∧ EV ENT (X) (11)

No escopo utilizado para a explicação do modelo TrustE,
as ações e eventos importantes no processo do cálculo de
confiança são:

1) a ação Y (positiva) de um agente em cumprir os termos
firmados em um diálogo;

2) a ação Y (negativa) de um agente em não cumprir os
termos firmados em um diálogo;

3) a ação Y de um agente confiar em outro agente;
4) o fato X de um agente receber a confiança de outro

agente;

5) o fato X de um agente ter cumprido os termos firmados
em um diálogo;

6) o fato X de um agente não ter cumprido os termos
firmados em um diálogo;

De certa forma, os eventos (5 e 6) se confundem com as
ações (1 e 2), no entanto essas ações, que são realizadas pelo
agente avaliado, são as responsáveis por dispararem os eventos
que produzem consequências sentidas pelo agente avaliador.

Utilizando-se o modelo em um escopo mais abrangente,
como por exemplo, numa simulação de bolsa de valores,
existiriam outras ações e/ou eventos que não estariam
relacionados diretamente com o cálculo da confiança. Por
exemplo, POSb(Y) poderia representar a ação de b indicar
ao agente a, uma venda de ações com baixo preço, enquanto
EV ENT (X) poderia representar o lucro de a por ter
comprado essas ações. Como consequência, a sentiria-se
ALEGRE e teria uma ADMIRACAO por b.

B. Detalhamento do Modelo TrustE

A figura 3 mostra uma visão conceitual do TrustE que
demonstra o fluxo de ações dos agentes. Para explicar esse
fluxo será utilizado um cenário no qual um agente quer
comprar um produto, de boa qualidade, pela Internet. Seja
a um agente comprador que irá escolher um agente vendedor
b entre todos os vendedores existentes (etapa 1). Para saber
se a deve ou não comprar o produto de b, ele irá calcular a
confiança em b (etapa 2). Caso o valor da confiança seja baixo,
a irá procurar outro agente vendedor, caso ela seja alta, a irá
comprar o produto de b (etapa 3). Ao receber a confiança de
a o agente b irá aumentar suas emoções positivas (etapa 4).
Passado algum tempo, b irá entregar o produto ao agente a
(etapa 5), esse por sua vez irá avaliar a qualidade do produto
(etapa 6). Se ele considerar a qualidade boa, suas emoções
positivas irão aumentar (etapa 7) e sua avaliação a respeito de
b será positiva (etapa 8), caso contrário suas emoções negativas
irão aumentar e sua avaliação a respeito de b será negativa.

A figura 4 mostra os dois módulos existentes no TrustE, o
módulo de confiança (MC) e o módulo de emoções (ME). O
primeiro é o responsável pelo cálculo da Reputação Individual
(RI) e Reputação Social (RS), que juntas irão resultar no valor
final da confiança (VFC). O segundo contém as funções de
intensidades das emoções I(E) e a memória das emoções
dos agentes (MEA), sendo que cada agente possui sua própria
MEA.

Conforme explicado anteriormente, o modelo REGRET
possui 4 valores para formar a confiança final, representados
na figura por Ra→b, Ra→B , RA→b e RA→B . O primeiro
peso utilizado no cálculo da RI Ra→b é o mesmo utilizado
no REGRET, que atribui valores maiores às avaliações dadas
recentemente. Já os primeiros pesos utilizados nas Reputações
Sociais Ra→B , RA→b e RA→B , são calculados a partir das
IEA. A escolha por esse grupo de emoções (emoções-de-
ações) para esses pesos, se deve ao fato desse tipo de emoção
estar relacionado a algum agente em especı́fico, assim é
possı́vel que cada agente consiga avaliar os outros levando
em consideração as emoções relacionadas a cada um deles.

TrustE - An Emotional Trust Model for Agents

89

Figure 3. Visão Conceitual do Modelo TrustE

Figure 4. Modelo TrustE

Depois de calculados esses 4 valores, eles são combinados
para formar o VCF. Os pesos utilizados nessa parte do cálculo
levam em consideração as IEE, já que esse grupo de emoções
(emoções-de-eventos) não está relacionado diretamente a
nenhum agente em especı́fico e sim a eventos ocorridos que
modificam o estado emocional do agente. Devido ao fato de
acreditar-se que quando estamos alegres temos uma maior
tendência em confiar nos outros, quando um agente sentir
alegria ele irá dar um peso maior para a RS, e quando sentir
tristeza será dado um peso maior a RI.

V. CONSIDERAÇÕES FINAIS

Esse artigo apresentou o modelo hı́brido TrustE, que é um
modelo de confiança, baseado no REGRET, que utiliza as
emoções do agente no mecanismo de cálculo da confiança,
visando capturar a complexidade do raciocı́nio humano e
flexibilizar as avaliações quantitativas, introduzindo elementos
de natureza qualitativa ao modelo.

Acredita-se que a inserção de emoções e a utilização das
suas intensidades possam propiciar um maior realismo ao
modelo, pois a tomada de decisão do agente estará diretamente
ligada ao seu estado emocional. Como próxima etapa, o
modelo deverá ser implementado e validado em cenários de
negociação entre agentes. O modelo originalmente proposto
pode ainda ser expandido para comportar um maior número
de emoções.

REFERENCES

[1] E. Ostrom, “A behavioral approach to the rational choice theory
of collective action: Presidential address, american political science
association, 1997,” American Political Science Review, pp. 1–22, 1998.

[2] J. Sabater and C. Sierra, “Regret: reputation in gregarious societies,” in
Proceedings of the fifth international conference on Autonomous agents.
ACM, 2001, pp. 194–195.

[3] W. Teacy, J. Patel, N. Jennings, and M. Luck, “Travos: Trust and
reputation in the context of inaccurate information sources,” Autonomous
Agents and Multi-Agent Systems, vol. 12, no. 2, pp. 183–198, 2006.

[4] J. Sabater and C. Sierra, “Review on computational trust and reputation
models,” Artificial Intelligence Review, vol. 24, no. 1, pp. 33–60, 2005.

[5] T. Dong-Huynha, N. Jennings, and N. Shadbolt, “Fire: An integrated
trust and reputation model for open multi-agent systems,” in ECAI 2004:
16th European Conference on Artificial Intelligence, August 22-27, 2004,
Valencia, Spain, vol. 110. Ios Pr Inc, 2004, p. 18.

[6] G. Lu, J. Lu, S. Yao, and Y. Yip, “A review on computational trust
models for multi-agent systems,” The Open Information Science Journal,
vol. 2, pp. 18–25, 2009.

[7] S. Marsh, “Formalising trust as a computational concept,” Ph.D.
dissertation, Department of Mathematics and Computer Science,
University of Stirling, 1994.

[8] G. Zacharia, A. Moukas, and P. Maes, “Collaborative reputation
mechanisms for electronic marketplaces,” Decision Support Systems,
vol. 29, no. 4, pp. 371–388, 2000.

[9] B. Yu and M. Singh, “Searching social networks,” in Proceedings of
the second international joint conference on Autonomous agents and
multiagent systems. ACM, 2003, pp. 65–72.

[10] E. Lorini, “Agents with emotions: a logical perspective,” ALP Newsletter,
vol. 12, no. 2-3, 2008.

[11] A. Ortony, G. Clore, and A. Collins, The cognitive structure of emotions.
Cambridge university press, 1990.

[12] B. R. Steunebrink, M. Dastani, and J.-J. C. Meyer, “Towards a
quantitative model of emotions for intelligent agents,” in Proceedings
of the 2nd Workshop on Emotion and Computing-Current Research and
Future Impact, Osnabrück, Germany, 2007.

[13] B. Steunebrink, M. Dastani, and J. Meyer, “The occ model revisited,” in
Proceedings of the 4th Workshop on Emotion and Computing, vol. 65,
2009, pp. 2047–2056.

[14] B. R. Steunebrink, M. Dastani, and J. Meyer, “A logic of emotions
for intelligent agents,” in Proceedings of the National Conference on
Artificial Intelligence, vol. 22, no. 1. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2007, p. 142.

Bitencourt, Silveira and Marchi

90

Using the JaCaMo framework to develop a SMA for
the MAPC 2012 “Agents on Mars” scenario

Mariana Ramos Franco, Jaime Simão Sichman
Laboratório de Técnicas Inteligentes (LTI)

Escola Politécnica (EP)
Universidade de São Paulo (USP)

Email: mafranko@usp.br, jaime.sichman@poli.usp.br

Abstract—This paper describes the architecture and core ideas
of the Multi-Agent System created by the LTI-USP team which
participated in the 2012 edition of the Multi-Agent Programming
Contest (MAPC 2012). The contest scenario represented a coor-
dinated exploration on Mars. The team organization was based
on the Moise organisational model, and its implementation used
the JaCaMo multi-agent framework.

Keywords—Multi-Agent System, Multi-Agent Programming, Ja-
CaMo, Jason, CArtAgO, Moise.

I. INTRODUÇÃO

Recentemente, tem havido um movimento rumo ao uso
de organizações explı́citas no projeto e desenvolvimento de
Sistemas Multiagentes (SMA) [1], [2]. A organização ajuda
a modelar melhor o problema em questão, e a aumentar a
eficiência do sistema, definindo a estrutura do SMA e as regras
que os agentes devem seguir para atingir seus objetivos.

Seguindo esta premissa, neste artigo descrevemos um SMA
com organização explı́cita, desenvolvido para participação na
edição de 2012 do Multi-Agent Programming Contest1 (MAPC
2012).

O MAPC é uma competição realizada todos os anos com
o propósito de estimular a pesquisa no campo da programação
de SMA [3]. Em cada rodada do evento, dois times de agentes
são situados no mesmo ambiente e competem diretamente num
cenário definido pelos organizadores. Por se tratar de uma
competição direta, é um cenário interessante para avaliar e
comparar diferentes sistemas, identificar pontos fortes e fracos,
e promover o desenvolvimento de todos os participantes.

Nosso time foi baseado no modelo organizacional Moise,
e foi desenvolvido utilizando a infraestrutura fornecida pelo
arcabouço JaCaMo.

Moise2[4] é um modelo organizacional que decompõe a
especificação da organização em três dimensões: estrutural,
funcional e deôntica. O modelo permite que o projetista espe-
cifique explicitamente as restrições e os padrões de cooperação
a serem impostas ao agentes pela organização.

JaCaMo3 [5] é um arcabouço que cobre todos os nı́veis
de abstração necessários para o desenvolvimento de SMA
sofisticados, pois possibilita, além da programação dos agentes,

1Site da competição: http://multiagentcontest.org/.
2Disponı́vel em http://moise.sourceforge.net/.
3Disponı́vel em http://jacamo.sourceforge.net/.

a definição do ambiente e da organização do SMA. Cada um
desses nı́veis de abstração (agente, ambiente e organização)
são implementados através da combinação de três tecnologias
distintas: Jason4 [6], para programação dos agentes; CArtAgO5

[7], para programação do ambiente; e Moise, para programação
da organização.

A motivação principal para a participação na competição
foi testar e analisar o arcabouço JaCaMo e sua camada
organizacional, a fim de identificar os pontos fracos e fortes
da plataforma, e suas possı́veis limitações de desempenho.

A seguir, o cenário da competição é brevemente descrito
na seção II, e em seguida o SMA desenvolvido é apresentado
na seção III. Alguns resultados preliminares de análise de
desempenho do arcabouço JaCaMo são mostrados na seção
IV e as conclusões do trabalho apresentadas na seção V.

II. Multi-Agent Programming Contest

O MAPC é uma competição internacional realizada anu-
almente desde 2005 com o propósito de estimular a pesquisa
na área de programação de SMA. Em 2011, o MAPC definiu
como tema para a competição o cenário “Agents on Mars”, no
qual os concorrentes devem projetar uma equipe de 20 agentes
para explorar e ocupar as melhores zonas de Marte.

Neste cenário, dois times de agentes competem para do-
minar os melhores poços de água do planeta. O ambiente
é representado por um grafo ponderado, em que os vértices
denotam poços e possı́veis localizações para os agentes; e as
arestas indicam a possibilidade de atravessar de um vértice
para outro, com um custo em energia para o agente. Cada
vértice possui um valor correspondente ao poço de água nele
localizado, e esse valor é utilizado para o cálculo do valor das
zonas ocupadas pelos agentes.

Uma zona é um sub-grafo coberto por uma equipe de
acordo com um algoritmo de coloração baseado na noção de
domı́nio [3]. Vários agentes podem estar em um único vértice,
mas o seu domı́nio é dado ao time com maior número de
agentes. Se um conjunto de agentes domina um vértice por
número, este recebe a cor da equipe dominante. Um vértice
sem cor que tem a maioria dos vizinhos com uma cor especı́fica
herda essa cor para si. Por fim, se o grafo geral contém um
sub-grafo colorido que constitui uma fronteira, todos os nós
que estão dentro desta fronteira também são coloridos. Isto

4Disponı́vel em http://jason.sourceforge.net/.
5Disponı́vel em http://cartago.sourceforge.net/.

Using the JaCaMo framework to develop a SMA for the MAPC 2012 Ägents on Marss̈cenario

91

significa que os agentes podem colorir ou cobrir um sub-grafo
que tem mais vértices do que o número de agentes. A Figura
1 mostra parte de um mapa com os sub-grafos coloridos.

Figura 1. Cenário “Agents on Mars”.

O mapa é desconhecido dos agentes no começo da
simulação. Assim, cada equipe precisa explorar o grafo antes
de começar a conquistar as zonas, dado ainda que os agentes
possuem visão limitada do mapa e só recebem percepções dos
vértices próximos. Além disso, às vezes, uma equipe precisa
sabotar o outro time para conseguir aumentar sua área, ou se
defender para não perder zonas para o oponente.

Cada time é formado por 20 agentes e cinco papéis
diferentes, sendo quatro agentes por papel. Os papéis, descritos
na Tabela I, definem caracterı́sticas próprias de cada agente,
tais como nı́vel de vida, energia máxima, força e visibilidade, e
as ações que o agente pode realizar no ambiente. Por exemplo,
os exploradores podem encontrar poços de água e ajudar a
explorar o mapa, os sentinelas possuem sensores de longa
distância e assim podem observar grandes áreas, os sabotadores
podem atacar e desativar os inimigos, os inspetores podem
espionar os adversários, e os reparadores podem consertar
agentes danificados.

Se uma equipe atinge um marco importante, ela recebe
uma recompensa em dinheiro. A recompensa ganha por uma
equipe pode ser usada para equipar os agentes, aumentando,
por exemplo, o máximo de energia ou a força de um agente.
Existem diferentes marcos que podem ser atingidos durante
uma competição, tais como ter zonas com valores fixos (por
exemplo, 10 ou 20), número fixo de ataques bem sucedidos,
ou número fixo de defesas realizadas com sucesso. Se não for
usado, o dinheiro ganho é somado à pontuação total da equipe.

O objetivo do jogo é maximizar a pontuação do time,
que é definida como a soma dos pontos obtidos pelas zonas
ocupadas com o dinheiro ganho (e não gasto) em cada passo
da simulação, como mostra a Equação 1:

pontuacao =

passos∑

p=1

(zonasp + dinheirop) (1)

Tabela I. PAPÉIS E AÇÕES.

explorador reparador sabotador sentinela inspetor
recarregar x x x x x
atacar x
defender x x x
mover x x x x x
sondar6 x
examinar7 x x x x x
inspecionar8 x
comprar x x x x x
reparar x

III. LTI-USP Team

A seguir, são apresentadas a arquitetura e as estratégias
principais do SMA, chamado de “LTI-USP Team”, que foi
desenvolvido utilizando o arcabouço JaCaMo para participar
do MAPC 2012.

O JaCaMo [5] é um arcabouço que cobre todos os nı́veis de
abstração necessários para o desenvolvimento de sofisticados
SMA, pois possibilita, além da programação dos agentes, a
definição do ambiente e da organização do SMA. Cada um
desses nı́veis de abstração (agente, ambiente e organização)
são implementados através de um dos três componentes que
compõem o arcabouço: Jason, CArtAgO e Moise.

A. Arquitetura

A arquitetura do SMA é apresentada na Figura 2 e baseia-
se no modelo BDI [8]. Os agentes foram desenvolvidos através
da plataforma Jason, e cada agente possui sua própria thread de
controle, planos, uma base de crenças e modelo de mundo. Os
planos são especificados em AgentSpeak[9], e em cada passo
da simulação o agente decide qual plano será executado de
acordo com as suas crenças e visão local do mundo.

O modelo de mundo consiste de um grafo desenvolvido
em Java utilizando classes e estruturas de dados simples. Ele
capta todos os detalhes recebidos do servidor do MAPC, tais
como vértices e arestas exploradas, posição dos adversários,
companheiros de equipe desativados, etc. Em cada passo da
simulação, o modelo de mundo do agente é atualizado com
as percepções recebidas do servidor e com as informações
recebidas dos outros agentes. O agente pode acessar ou alterar
o estado do seu modelo de mundo através de ações internas
desenvolvidas em Java. Alguns exemplos de ações internas
são:

• closer repairer(Pos), que devolve ao agente a
posição do agente reparador mais próximo,

• move to target(Pos, Target,NextPos), que diz
ao agente para qual vértice ele deve se mover a fim
de alcançar determinada posição no grafo.

Algumas percepções recebidas do servidor são também
armazenadas na base de crenças do agente, tais como seu

6A priori, os agentes não tem conhecimento sobre o valor dos poços de
água. Apenas após sondar um vértice é que o time toma conhecimento do
valor do poço.

7Inicialmente, os agentes não conhecem qual o custo de se atravessar de um
vértice a outro. Para descobrir qual o valor de cada aresta, o agente precisa
examiná-la antes.

8Esta ação coleta informações sobre os oponentes presentes em vértices
vizinhos, tais como nı́vel de vida, energia e papel.

Franco and Sichman

92

Figura 2. Arquitetura do “LTI-USP Team”.

papel, seu nı́vel de energia e sua posição. Isto permite que
o agente tenha acesso direto a essas informações sem ter que
acessar o modelo de mundo. As percepções sobre vértices,
arestas e outros agentes não são armazenadas na base de
crenças para não comprometer o desempenho do agente, uma
vez que poderia ser muito caro atualizar e acessar a base
de crenças com tanta informação: o mapa de Marte utilizado
na competição continha cerca de 400 vértices e centenas de
arestas.

A comunicação entre os agentes ocorre através do Jason
e, para reduzir a sobrecarga de comunicação, os agentes
transmitem aos outros apenas as percepções novas, isto é,
apenas as percepções recebidas do servidor que produzem
alguma atualização no seu modelo de mundo. Por esta razão,
existe uma forte troca de informação entre os agentes no inı́cio
de uma partida, devido à comunicação sobre percepções novas,
especialmente aquelas relacionadas à estrutura do mapa, como
vértices e arestas. No entanto, a sobrecarga de comunicação
diminui à medida que os agentes vão construindo um modelo
de mundo mais completo. Os agentes se comunicam para:

(i) informar os outros agentes sobre a estrutura do mapa;

(ii) informar sobre agentes inimigos;

(iii) pedir que algum outro agente vá repará-lo;

(iv) pedir que um agente vá para determinado vértice.

Os agentes se comunicam com o servidor da competição
através da interface EISMASSim incluı́da no pacote de soft-
ware do simulador distribuı́do aos participantes. O EISMAS-
Sim se baseia no EIS9[10], que é um padrão proposto para

9Disponı́vel em http://sourceforge.net/projects/apleis/.

a interação agente-ambiente. Ele automaticamente estabelece
e mantém conexões autenticadas com o servidor, além de
abstrair a comunicação para simples chamadas de métodos em
Java. A fim de utilizar essa interface, foi necessário estender
a arquitetura padrão de agentes do JaCaMo para que fosse
possı́vel a um agente não só perceber e agir sobre os artefatos
do CArtAgO, mas também interagir com o servidor.

CArtAgO é um arcabouço baseado no meta-modelo A&A
(Agentes e Artefatos) [11] para o desenvolvimento e execução
de ambientes em SMA. No CArtAgO o ambiente é projetado
como um conjunto dinâmico de entidades computacionais
chamadas de artefatos, que representam os serviços e ferra-
mentas que os agentes são capazes de explorar em tempo
de execução [5]. O conjunto de artefatos é organizado em
um ou múltiplos workspaces, que podem ser distribuı́dos em
vários nós de uma rede. Agentes podem entrar e sair dos
workspaces e, dentro destes, artefatos podem ser criados e
descartados dinamicamente pelos agentes [12]. Neste projeto
não foi criado nenhum artefato novo, apenas se fez uso dos
artefatos organizacionais fornecidos pelo Moise.

Moise é um modelo organizacional que decompõe a
especificação da organização em três dimensões: estrutural,
funcional e deôntica [4]. O modelo permite que o projetista
especifique explicitamente a organização do SMA e suas
restrições, além de também poder ser usado pelos agentes para
raciocinar sobre sua organização. A especificação organizaci-
onal do time desenvolvido é descrita a seguir.

B. Estratégia

Podemos definir a estratégia adotada como uma
combinação da estratégia organizacional, das estratégias
especı́ficas de cada papel, e da estratégia de coordenação.

1) Estratégia Organizacional: A estratégia principal do
time foi dividir os agentes em três subgrupos: dois grupos
responsáveis por ocupar as melhores zonas do mapa (subgru-
pos zona1 e zona2), e um encarregado de sabotar o time
inimigo (subgrupo sabotagem). Para organizar os agentes
dessa maneira, foram utilizados os artefatos organizacionais
fornecidos pelo Moise, e definidas as especificações estrutural
(EE), funcional (EF) e deôntica (ED) do SMA.

A EE define os papéis, relações entre papéis, e grupos
de uma organização. Cada agente pode assumir um ou mais
papéis, e cada papel está relacionado com um conjunto de
restrições comportamentais que um agente aceita ao entrar em
um grupo. Como mostrado na Figura 3, na EE do LTI-USP
Team foram definidos os três subgrupos citados anteriormente,
e sete possı́veis papéis: os cinco papéis especificados pelo
cenário (explorador, sabotador, sentinela, reparador e inspetor),
e mais dois papéis chamados “marciano” e “coordenador”.
O coordenador é o responsável por conduzir os agentes a
ocuparem as melhores zonas de Marte e, diferente dos outros
agentes, o coordenador não se comunica com o servidor do
MAPC. O marciano é o papel padrão adotado pelos outros
agentes no inı́cio de uma partida, enquanto não recebem do
servidor a informação sobre qual papel desempenhar.

A EF define como os objetivos globais devem ser alcan-
çados, isto é, como esses objetivos são decompostos (em sub-
metas) e distribuı́dos aos agentes (em missões). Ela também

Using the JaCaMo framework to develop a SMA for the MAPC 2012 Ägents on Marss̈cenario

93

Figura 3. Especificação Estrutural do “LTI-USP Team”.

especifica como as sub-metas estão relacionadas, se devem
ser alcançadas em paralelo ou em uma certa sequência. Desta
forma, cada subgrupo anteriormente especificado possui um
meta global associada, definida na EF. Na Figura 4, essas
metas globais são representadas como raiz das árvores, que
apresentam em suas folhas as sub-metas a serem atingidas
pelos agentes. O rótulo que aparece logo acima de uma meta
representa a missão ao qual o agente deve estar comprometido,
a fim de atingir a meta relacionada. Para cada uma das missões
existe um plano que o agente deve seguir.

Figura 4. Especificação Funcional do “LTI-USP Team”.

As diferentes metas relacionadas a cada subgrupo são
apresentadas a seguir:

• occupyZone1: Os agentes no grupo zona1 devem
ocupar a melhor zona no grafo seguindo as orientações
dadas pelo agente coordenador. Além disso, um dos
exploradores fica responsável por sondar os vértices
do grafo, a fim de encontrar as melhores zonas a
serem ocupadas. Por fim, um inspetor tem a missão
de identificar o papel de cada agente no time inimigo.
Apenas ao tomar conhecimento do papel de todos os
oponentes é que o inspetor se junta ao resto do time
na missão de ocupar a melhor zona do grafo.

• occupyZone2: Todos os agentes no grupo zona2
tem a missão de ocupar a segunda melhor zona no
grafo, ou ajudar o grupo zona1 a formar uma área

maior. Se este grupo deve ou não se juntar ao outro
grupo é determinado pelo coordenador, que verifica
a existência ou não de duas boas zonas dispersas no
grafo.

• sabotage: O grupo sabotagem é formado por
um sabotador e um sentinela. A missão do sabotador
é atacar os oponentes que ocupam bons vértices; e
a missão do sentinela é de ajudar na sabotagem,
movendo-se para dentro da zona do time inimigo de
forma a quebrá-la ou fazê-la diminuir.

Por fim, a ED liga as especificações estrutural e funcional
definindo com quais missões um papel tem a obrigação ou
a permissão de se comprometer. A ED do LTI-USP Team é
representada na Tabela II.

Tabela II. ESPECIFICAÇÃO DEÔNTICA DO “LTI-USP Team”.

Papel Missão Relação Deôntica
explorador mExplore, mOccupyZone1 permissão
explorador mOccupyZone2 obrigação
reparador mRepairZone1, mRepairZone2 obrigação
sabotador mSabotage, mOccupyZone1, mOccupyZone2 obrigação
sentinela mSentinelSabotage, mOccupyZone1, mOccupyZone2 obrigação
inspetor mInspect, mOccupyZone1 permissão
inspetor mOccupyZone2 obrigação

coordenador mCoordinate obrigação

2) Estratégias Dependentes do Papel: Para cada papel,
foram desenvolvidas estratégias especı́ficas. Por exemplo, os
exploradores devem sondar e examinar todo vértice ou aresta
no seu caminho, enquanto os inspetores devem sempre procu-
rar inspecionar inimigos próximos.

Os agentes também se comportam diferentemente, depen-
dendo do papel que desempenham, quando encontram um
oponente no mesmo vértice. Os sabotadores sempre atacam
o oponente, enquanto os sentinelas procuram se defender e os
outros agentes fogem para um outro vértice.

3) Estratégia de Coordenação: A estratégia adotada é
baseada na centralização da coordenação, isto é, um único
agente (coordenador) é responsável por determinar quais as
melhores zonas do mapa e, em seguida, conduzir os outros
agentes a ocuparem essas zonas. A escolha da coordenação
centralizada foi feita para permitir o rápido desenvolvimento da
equipe, uma vez que a motivação principal era se concentrar no
uso da plataforma JaCaMo e não nos aspectos de coordenação.

Desta forma, o coordenador constrói o seu modelo de
mundo através das percepções difundidas pelos outros agentes
e, sempre que o modelo de mundo é atualizado, calcula
quais são as duas melhores zonas no grafo. O coordenador
então pede para que os agentes (de cada um dos dois grupos
responsáveis por ocuparem as zonas) se movam para dentro das
zonas calculadas. Quando todos os agentes estiverem dentro
das zonas, o coordenador passa então a olhar nos vértices
vizinhos a estas, procurando posições para as quais os agentes
possam se mover a fim de aumentar o tamanho da área
conquistada.

IV. ANÁLISE DE DESEMPENHO

O grande obstáculo no desenvolvimento do time foi lidar
com os problemas de desempenho relacionados com o uso
concorrente dos artefatos organizacionais.

Franco and Sichman

94

No inı́cio de cada partida, os agentes recebem quase que
ao mesmo tempo do servidor do MAPC os papéis que irão de-
sempenhar naquela partida para então tentar entrar em um dos
três grupos especificados (zona1, zona2 e sabotagem).
Neste momento, é possı́vel que, por exemplo, todos os quatro
sabotadores queiram entrar no grupo sabotagem, mas, como
mostrado na Figura 3, neste grupo só é permitido um sabotador.
Neste caso, três sabotadores serão impedidos de entrar no
grupo sabotagem e terão que tentar se juntar a outro grupo.
Em testes realizados antes da competição, foi notado que a cha-
mada de uma ação organizacional, tais como adoptRole (para
a adoção de um papel em um grupo) ou commitMission
(para se comprometer a uma missão), é muito cara, e que
o número de tentativas feitas por um agente até finalmente
conseguir entrar em um grupo podia ser muito alto. Isto fazia
com que alguns agentes perdessem alguns passos no inı́cio da
simulação, já que em cada passo os agentes tem um prazo
limitado (1000 ms) para enviarem as suas ações.

Para corrigir esse problema, passamos para o agente coor-
denador a responsabilidade de distribuir entre os outros agentes
os grupos e missões. Desta forma, foi evitada a ocorrência
de colisões, como agentes tentando entrar no mesmo grupo
ou se comprometer com a mesma missão. Isto melhorou o
desempenho do SMA, mas mesmo assim foi possı́vel observar
durante a competição que alguns agentes continuavam per-
dendo passos antes de finalmente conseguir se comprometer
com uma missão na organização.

Assim, após o término da competição foram realizados
alguns experimentos para avaliar de forma preliminar o de-
sempenho da operação adoptRole, em função do número de
agentes tentando acessar a operação em concorrência.

No primeiro experimento, foram coletados para cada agente
o tempo (em milissegundos) entre a chamada da operação
adoptRole e a atualização da base de crenças do agente com o
papel adotado. Neste experimento, cada agente tenta assumir
um papel diferente na organização, o que significa que não
há risco da operação adoptRole falhar. Para cada número
de agentes (10, 20, 50 e 100), o experimento foi rodado 20
vezes, e o tempo médio de resposta para um agente adotar um
papel é apresentado na Figura 5. É possı́vel notar que o tempo
de resposta da operação aumenta consideravelmente com o
número de agentes acessando o artefato ao mesmo tempo.

Figura 5. Tempo médio gasto para cada agente adotar um papel, em relação
ao número de agentes executando a operação adoptRole em concorrência.

Em outro experimento, novamente o número de papéis é
igual ao número de agentes, mas inicialmente todos os agentes

tentam adotar o mesmo papel. Como apenas um agente pode
adotar cada papel, ocorre que a grande maioria dos agentes
não consegue adotar o papel inicial, e então tentam adotar
um segundo papel, e assim sucessivamente, até que todos os
agentes tenham conseguido um papel na organização. Foram
coletados neste experimento, o tempo médio gasto para cada
agente entre a primeira chamada da operação adoptRole, e
a atualização da base de crenças do agente com o papel
adotado. Além disso, também foram coletados o número médio
de tentativas feita por cada agente até finalmente ter sucesso
em adotar um papel. Os resultados obtidos são mostrados na
Figura 6.

Figura 6. (a) Tempo médio gasto por cada agente para adotar um papel,
em relação ao número de agentes executando a operação adoptRole em
concorrência; e (b) Número médio de chamadas a operação adoptRole por
agente.

Comparando os dois experimentos, é possı́vel notar que
o resultado obtido no primeiro, em que cada agente adota
um papel diferente, é melhor do que os resultados obtidos no
segundo experimento, em que inicialmente os agentes tentam
adotar o mesmo papel. Isto reforça a nossa escolha de ter
dado ao agente coordenador a responsabilidade de distribuir
os papéis entre os outros agentes, a fim de reduzir o número
de chamadas para a operação adoptRole, e assim melhorar o
desempenho do SMA.

Além disso, é possı́vel notar que o tempo aumenta consi-
deravelmente com o número de agentes, principalmente para
os valores acima de 20 agentes. Esse aumento no tempo
de resposta da operação pode ser explicado pela arquitetura
utilizada pelo CArtAgO, na qual cada workspace possui uma
fila para onde vão as requisições dos agentes para a execução
das operações nos artefatos, e de onde 20 threads ficam
responsáveis por capturar as requisições e executá-las. Assim,
quando se tem um número de requisições concorrentes maior

Using the JaCaMo framework to develop a SMA for the MAPC 2012 Ägents on Marss̈cenario

95

que o número de threads trabalhando para executá-las, é
normal que as requisições “em excesso” tenham que ficar
esperando mais tempo na fila até serem executadas.

V. CONCLUSÕES

A participação de nosso time no MAPC 2012 foi de
grande valia no objetivo de conhecer melhor o funcionamento
do arcabouço JaCaMo. Apesar dos esforços não terem sido
direcionados na procura de uma melhor estratégia, o time
desenvolvido acabou o torneio em quarto lugar em um total
de sete equipes.

Nosso grande obstáculo no desenvolvimento do time foi
lidar com os problemas de desempenho relacionados com o uso
concorrente dos artefatos organizacionais. Em cenários onde
o tempo é limitado, como o enfrentado nessa competição, o
desempenho de uma plataforma é um fator muito importante.
Assim, os problemas de desempenho encontrados podem aca-
bar dificultando a adoção do JaCaMo em tais cenários. Con-
sequentemente, como trabalho futuro pretende-se realizar uma
avaliação completa do desempenho e gargalos no JaCaMo.

Apesar desses problemas de desempenho, o arcabouço
JaCaMo provou ser bastante completo, fornecendo todas as
ferramentas que precisávamos para desenvolver o SMA. Além
disso, o uso do modelo organizacional Moise ajudou no projeto
da equipe, uma vez que fornece uma forma de estruturar o
SMA, não somente através da especificação de grupos e papéis,
mas principalmente na definição de como os objetivos globais
devem ser alcançados.

AGRADECIMENTOS

Jaime Simão Sichman é parcialmente financiado pelo
CNPq e FAPESP/Brasil.

REFERÊNCIAS

[1] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations:
an organizational view of multi-agent systems,” Agent-Oriented Soft-
ware Engineering IV, no. July 2003, pp. 214–230, 2004.

[2] O. Boissier, J. Hübner, and J. Sichman, “Organization oriented program-
ming: From closed to open organizations,” in Engineering Societies in
the Agents World VII, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, vol. 4457, pp. 86–105.

[3] T. Behrens, M. Köster, and F. Schlesinger, “The multi-agent program-
ming contest 2011: a résumé,” Programming Multi-Agent Systems, pp.
155–172, 2012.

[4] J. Hübner, J. Sichman, and O. Boissier, “Developing organised mul-
tiagent systems using the MOISE+ model: programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, pp. 1–27, 2007.

[5] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, “Multi-
agent oriented programming with JaCaMo,” Science of Computer Pro-
gramming, 2011.

[6] R. Bordini, J. Hübner, and M. Wooldridge, Programming multi-agent
systems in AgentSpeak using Jason, 2007.

[7] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: an artifact-based perspective,” Autonomous Agents and
Multi-Agent Systems, vol. 23, no. 2, pp. 158–192, Jun. 2010.

[8] M. Bratman, Intentions, Plans, and Practical Reason. Harvard
University Press, 1987.

[9] A. S. Rao, “Agentspeak(l): Bdi agents speak out in a logical computable
language,” in Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world : Agents Breaking Away, ser.
MAAMAW ’96. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1996, pp. 42–55.

[10] T. M. Behrens, J. Dix, and K. V. Hindriks, “The Environment Inter-
face Standard for Agent-Oriented Programming - Platform Integration
Guide and Interface Implementation Guide,” Department of Informatics,
Clausthal University of Technology, Technical Report, vol. IfI-09-10,
2009.

[11] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the a&a meta-model
for multi-agent systems,” Autonomous Agents and Multi-Agent Systems,
vol. 17, no. 3, pp. 432–456, Dec. 2008.

[12] A. Ricci, M. Viroli, and A. Omicini, “CArtAgO: An infrastructure for
engineering computational environments in MAS,” 3rd Inter. Workshop
”Environments for Multi-Agent Systems”(E4MAS), 2006.

Franco and Sichman

96

An Experiment of Verification of Multi-agent

Robotic Soccer Plans with Model Checking

Rui C. Botelho A. S.
1
, Aline M. S. Andrade

2
, Augusto Loureiro da Costa

3
, Frederico J. R. Barboza

2

1
Post-graduation Program on Mechatronics – Master,

2
Distributed Systems Laboratory,

3
Robotics Laboratory

Federal University of Bahia, UFBA

Salvador, Brazil

{ruicbs,fred.barboza}@gmail.com,{aline,augusto.loureiro}@ufba.ba

Abstract—In this paper we present an experiment of model

checking which consists of the verification of plans of a multi-

agent system for simulated robot soccer. This system is of

considerable complexity because it is concurrent,

nondeterministic and with partial vision of the environment.

Some solutions adopted relative to modeling and process of

verification to circumvent state space explosion are reported.

Keywords—Model Checking; Planning; Multi-agent Systems,

Autonomous Agents

I. INTRODUCTION

In recent decades, research involving the development of
Autonomous Agents - AAs and Multi-agent Systems - MAS
has increased in academia and industry. This is due to the use
of these systems, whether real or virtual entities, in various
kinds of applications: autonomous robots, multi-robot
systems, unmanned vehicles, control systems, flight plans of
aircraft combat systems, air traffic control, simulation,
matches of physical or simulated robots in software, softbots,
among others.

The use of MAS and AAs are motivated by their inherent
characteristics such as autonomy, collaboration, proactivity
among others. The main activities of these entities are related
to the achievement of objectives that are performed based on
planning. It is necessary to ensure that AAs individually or
MAS collectively have correct plans to guarantee that they do
not behave unintendedly, and have desirable outcomes.
Formal methods can be used in this context, particularly
model checking, which has been used in several works
published in this area [1, 2, 3, 4, 5, 6, 7].

In this paper we present the results of the verification of
plans of robot soccer, the Mecateam [8], which uses the
simulated environment Robocup [9]. Our interest in this team
is mainly due to the fact that it is a multi-agent system with a
multilayer architecture, which imposes a parallelism in the
internal plans of the agents increasing the state space of the
problem.

In robot soccer the environment is non-deterministic and
players only have a partial vision of it. These features
combined with the three-layer architecture of Mecateam add
complexity to its planning, requiring care in both modeling
and verification of the plans. With this in mind some solutions

were carried out: abstractions were done to overcome the state
space explosion; a decomposition of the plans based on the
multilayer organization of the agents was considered; the
process of verification was implemented in an incremental
way considering an evolution of the models of the plans from
the individual plans of the agents to their collective ones.
These solutions together allowed the verification of a
significant part of the state space of the problem.

For our experiment the UPPAAL model checker [10] was
used. UPPAAL is a tool set applied in modeling and
verification of systems which uses timed automata formalism
to model the system and a subset of TCTL (Timed
Computation Tree Logic)[10] for the specification of the
system properties.

The contributions of this paper include solutions adopted
in modeling and verification of a MAS complex real
application with model checking which may be useful in
similar multi-agent systems.

This paper is organized as follows: in the following section
related works are presented; section 3 presents an introduction
of the robot soccer team; section 4 presents the specification
of the plans as automata; section 5 presents the plan model
checking; and finally, in section 6, some conclusions are
presented.

II. RELATED WORKS

In [1,2] the validation of plans for a multi-agent simulation
environment for tactical fighter aircraft is considered. This is
highly dynamic, non-deterministic and has partial vision. The
multi-agent plans are modeled as a network of hybrid
automata [3] and the agents have more reactive than cognitive
behavior.

In [4,5] the plans verification of a controller and scheduler
system that composes the remote control of the robot Deep
Space 1 used in U.S. space agency missions (NASA - National
Aeronautics Space Administration)was carried out using
UPPAAL. This work deals with the reactive behavior of the
individual agents without considering the interaction with
other agents.

In [6] the potential use of hybrid automata using the
HYTEC tool to model and verify plans of autonomous agents

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

97

is demonstrated considering an unmanned aerial
reconnaissance case study. In this case the plans are almost
always deterministic, the environment is non-dynamic and the
agents do not interact with each other.

The work presented in [7] uses model checking for
verification and simulation of soccer teams of robots at
runtime. It considers a specific platform, the Ericson
Company platform and the ERLANG specification language
and McERLANG verifier. The verification of the agent’s code
is considered as a whole, which comprises planning activities,
interface code, actions done in the environment, etc. which
make it difficult to distinguish planning errors from other
errors. In this work the team is modeled as a single component
which prevents the analysis of agents in isolation. Finally, the
verification is performed at runtime using the Soccerserver
simulation environment to simulate the match.

The works presented above focus on different features of
MAS, encompassing their several planning characteristics.
However, none of them consider as many aspects together as
our work does, namely: non-determinism, communication
among agents, partial vision, structured planning in three-ties,
verification of individual agents and collectively. These
aspects together increase the complexity of the problem and
require creative solutions to abstract the model and a
systematization of the verification process in order to model
and check the plans.

III. ROBOTIC SOCCER

Robot soccer is used as a platform for the study of a wide
variety of problems inherent in AAs, robotics and cooperative
MAS. Proposed by Robocup Federation, the robot soccer
Robocup has emerged as a laboratory for the study of
Distributed Artificial Intelligence (DSI) and its ramifications
[9].

 In a robot soccer match the robots must be able to:
recognize their position and all references of location in the
soccer field, represent the environment of the game, set
objectives, plan and execute actions to achieve their goals. To
deal with and provide consistent and intelligent behavior,
agents must combine a sequence of actions associated with a
primary set of concurrent actions, first individually and then
collectively, according to a planning that meets individual and
group objectives for each state of the environment.

A. The robot team Mecateam

The Mecateam robot soccer team was designed according
the Concurrent Autonomous Agent Architecture [11] which
comprises a cognitive, an instinctive and a reactive layer as
presented in Fig. 1. This team has been participating in major
competitions and has emerged as one of leading teams in
simulated robot soccer in Brazil. The cognitive layer is
responsible for the planning of the team, the reactive layer
perceives and acts on the environment and the instinctive layer
intermediates the communication between the cognitive and
the reactive layer. The plans of the team are covered by
cognitive and instinctive rules. The cognitive rules are
responsible for defining the objectives of the agents and
between each current objective and every future goals of the

team, the cognitive rules promote a change in the state of the
agent according to information about the environment from
the instinctive rules. The instinctive rules receive this
information from the reactive layer and determine the
behaviors to be carried out by the reactive layer in the
environment.

Fig. 1. Representation of the architecture of [10] (Adapted).

The individual plans of each player are composed of their
cognitive and instinctive rules and their interactions. The
performance of each player depends on its plans, changes in
the environment and its internal state. In turn, the plans of the
team are composed of the union of all individual plans and
represent the possibilities of collective action in response to
changes that occur in the environment.

The reactive layer has no decision-making behavior and
for this reason it was not considered in the scope of this work.

B. Cognitive rules

The cognitive plan has some similar rules for the groups of
agents (players): defenders (players 2, 3, 4 and 5) and
midfielders and forwards (players 6, 7, 8, 9, 10 and 11). Table
I presents two examples of cognitive rules by groups of
players. In the first rule (rule 0) the local_goal current of the
player is none. This corresponds to the beginning of the game,
the goalkeeper and the defenders go to advance which means
taking offensive actions in the game. The assertion local_goal
status active activates the current local goal, now advance.
The second rule (rule 3) changes the current local goal side-
attack to the current local goal mark if the local goal
side_attackfails. In this case the state mark is activated
(local_goal status active).

TABLE I. EXAMPLES OF COGNITIVE RULES

Goalkeeper and Defenders Midfields and Forwards

(rule_0_start
 (if

 (logic(local_goal current none)))

 (then

 (logic(local_goal current advance))

 (logic(local_goal status active))))

(rule_3_side_attack
 (if

 (logic(local_goal current side_attack))

 (logic(local_goal status fail)))

 (then

 (logic(local_goal currentmark))

 (logic(local_goal status active))))

In general the variable local_goal current has a set of
possible values: none, mark, advance, side_attack and ending;
and the variable local_goal status can assume the values:
active, achieve and fail. Combinations among these values
determine the individual player’s goals. The set of particular
values of local_goal current of a player depends on its role in
the team, unlike the local_goal status of each player which has

Botelho, Andrade, Barboza and Loureiro da Costa

98

the same set of values for all players. Table II shows the
values of these variables per group of players.

TABLE II. SETS OF LOCAL GOAL CURRENT / STATUS BY GROUP OF

PLAYERS.

C. Instinctive rules

The instinctive level of each agent contains a set of
instinctive rules and a subset of it is presented in Fig. 2. These
rules transmit the vision of the environment, from the reactive
level to the cognitive level, and determine the behaviors of the
reactive level on the environment. Between each current and
each future goal of the team, the cognitive level should
promote a change in the current state of the agent. This change
depends on the results of the execution of a set of instinctive
rules. Therefore, the instinctive rules intermediate the
communications between the reactive and the cognitive level.
The reactive level is responsible for: perceiving the situation
of the environment, acting on the environment, activating
reactive actions such as intercept ball, drive_ball_forward,
hold_ball, etc.

Fig. 2. Example of interactions between cognitive, instinctive and reactive

rules.

IV. SPECIFICATION OF THE PLANS AS AUTOMATA

In this section we present a brief description of timed
automata of UPPALL model checker used to model the rules
and some examples of models.

A. UPPAAL automata

An automaton in UPPAAL is represented as a graph with a
finite set of locations and transitions, represented as nodes and
edges respectively. The initial location is represented by two
concentric circles. Locations labeled “U” have priority over
other locations. In the automaton of Fig. 6, the urgent location
SendingEnvironmentInfo has priority over any other location
because the environment state must be updated before any
other action of the game is executed.

A transition can be controlled by guards and channels. The
guards are logical expressions that determine the conditions
for a transition to be triggered. For example the guard at the
transition between the locations None and Advance (Fig. 3)
determines that this transition will only be executed if the
LocalGoalCurrent == 4. The channels synchronize the
actions of two or more automata and can also be declared as
urgent or broadcast to give priority to the corresponding
transition and enable the communication with many automata
at the same time, respectively.

B. Models of the rules

The left and right sides of the rules specify pre and post
conditions which are modeled by the guards and changing in
the values of variables in the automaton. Part of the three
groups of players presented in Table II has the same set of
rules and they are modeled as shown in Fig. 3 and Fig. 4.

Fig. 3. Automaton of cognitive rules of the goalkeeper.

Fig. 4. Automaton of cognitive rules of the midfield and forward players.

The locations of the automata represent the current local
goals of the players. InFig. 3, the locations corresponding to
the possible goals of the cognitive rules of thegoalkeeper can
be identified (see Table II): None, Advance, Mark, Ending,
Side_Attack.In Fig. 4 the locations None, Side_Attack and
Mark correspond to local current goalsof midfields and
forwards players. For control purposes, the
variablesLocalGoalCurrent and LocalGoalStauts are declared
in the automata. They correspondto the variables local_goal
current and local_goal status of the rules,
respectively.LocalGoalCurrent can assume the values: 0 to
mark, 1 to advance, 2 to side_attack, 3 toending and 4 to none.

 Players

Variables 1 2,3,4,5 6,7,8,9,10,11

lo
ca

l_
g
o
a
l

 current

mark, side_attack, none

advance

ending

status fail, active, achieved

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==3,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==1&&
LocalGoalStatus[pNR]==2

LocalGoalCurrent[pNR]==2,
LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==4
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==4
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

99

LocalGoalStatus can assume the values: 0 to fail, 1 to active
and2 to achieved. The combined values of both variables drive
the change in location ofthe automaton. For example, rule
2_defense of Fig. 2 has state mark and statusachieved. In the
automaton of Fig. 4 that models this rule the corresponding
locationMark has the guards LocalGoalCurrent == 0 and
LocalGoalStatus == 2 thatcorrespond to state Mark and status
Achieved respectively. So, a transition to thelocation
Side_Attack occurs and the values of these variables are
updated toLocalGoalCurrent = 2 and LocalGoalStatus == 1.

Each instinctive rule was created as an elementary
component to allow the removal or addition of rules for
checking a particular player. Fig. 5 gives an idea of how the
instinctive rules were modeled in automata.

Fig. 5. Example of an instinctive rule and its respective automaton.

The automata presented up to here were used to verify
individual players, without considering their interactions with
the environment. For the verification of the entire team the
model was enhanced with the communication channels
Startgame, ReStartGame and ActionInfo between the
environment and the players. Fig. 6a and Fig. 6b show
examples of cognitive and instinctive rules resulting from the
inclusion of these communications channels, respectively. A
global boolean variable EnvironmentInfo was declared to
control if the environment has processed the information
resulting from the reactive actions in the previous round of the
match and if the information about each player is available.

The channels Startgame and ReStartGame are declared
broadcast to establish communication of the environment with
all the players at the same time and they are declared urgent
because the initial configuration of the game should be
restored with priority over other actions. The channel
ActionInfo represents the communication of each individual
player with the environment and it is declared urgent because
the environment should be restored to represent the actual
situation of the game before any other action is executed.Fig.
7 shows the automaton of the environment. From its initial
location a message (Start Game!) is sent to all players to
inform that the environment is ready and that the players can
start the game. In the location WaitingForActions the
environment waits for all players to inform (through channel
ActionInfo) the rules that were selected relative to a specific
scenario of the match. After receiving all messages the
transition to the location SendingEnvironmentInfo occurs and
the function setOpponentInformations() is executed to update
the current situation of the play considering the informations
of the players and the actions of the adversary team which is
simulated by the function setOpponentInformations
(oPHB,pTOA,pSOA). In case a goal is not done (goalScored

== false) a new round is initiated by the function
enableNextRound(), which is responsible to set the new state
of the environment in order to the match continue. In case a
goal is done (goalScored == true) the play is restarted. The
function setInitReinitValues() carries out the configuration or
reconfiguration of the environment in the beginning of the
match or when a goal is done respectively. When a goal is
done all players are informed by ReStartGame!channel.

Fig. 6. Model of rules with communication channels: (a) cognitive rules of

midfield and forward players, (b) an instinctive rule.

Fig. 7. Automaton of the environment.

The partial vision and the non-determinism of the
environment were represented through a range of values
previously defined by select label variable

1
of UPPAAL. For

example, in Fig. 6 the select label variable (oPHB: int[-11,0])
receives a value between -11 and 0 each time a transition
occurs from the location WaitingForActions to
SendingEnvironmentInfo to indicate who player is with the
ball when it is under control of the opponent team: {-1} – the
ball is with the goalkeeper, {-2 to -5} – the ball is with the
defensive players and {-5 to -11} – the ball is with the
midfield or forward players. If the selected value is 0 the ball
is in the field but it is not controlled by anyone.

V. MODEL CHECKING OF THE PLANS

Model checking consists of the specification of a finite
model (an automaton or a variation of this type of
representation) of a system and in the verification of desired
1
Select label variables will take a non-deterministic value in the range of their

respective types [9].

 (a)

((b)

Botelho, Andrade, Barboza and Loureiro da Costa

100

properties of the system through an exhaustive scan of the
model state space, which is done automatically [11].

UPPAAL is a model checker designed for the verification
of real-time systems. The UPPAAL tool set comprises a
modeling environment, a simulator that is used to interactively
monitor the execution of the model and a property checker
that uses a query language which is a subset of the TCTL. The
models in UPPAAL are designed as a network of timed
automata as shown in the previous section of this paper [11].
The problem of state explosion is an intrinsic characteristic of
model checking and solutions should be adopted to overcome
this problem, such as abstractions in the models,
compositional model checking [11], and other solutions.

A. Abstractions

To carry out model checking we did some abstractions in
order to simply the model and reduce the state space: the
soccer field was represented with one dimension, some match
situations and time constraints were disregarded and the
actions of the adversary team were simulated by a function in
UPPAAL. In addition, we used an incremental verification
process, presented in next section, which enabled the
verification of individual agents initially, followed by the
verification of groups of agents until the whole team in
interaction with the environment was considered. Moreover,
the multilayer architecture of Mecateam led to a
modularization of the specification and verification
considering the separation of cognitive and instinctive rules.

The representation of the field in one dimension (soccer
simulation works with two dimensions) considered six
regions, corresponding to the classic regions of a soccer field,
which are: area, intermediate and midfield for both teams.
This representation proved sufficient to explore relevant
situations of the game such as the movements of the players
and the partial view of the environment. It also allowed a
significant simplification of the state space of the model and
eliminated the problem of having to deal with calculations of
movement and trajectory in the 2D environment, which should
be resolved by a low level layer (reactive layer).

The following match situations were not represented
because they are controlled by Soccerserver and are not part of
the plans: corners, off sides, penalties, among others. In
relation to time constraints, the cognitive and instinctive rules
do not use this type of restriction. Although the Robocup
environment considers a deadline for receiving agent
messages, and our model has been devised to allow the
inclusion of time constraints, we did not consider them in this
version of the model. We emphasize that this did not cause
any loss, considering the purpose of the cognitive and
instinctive plan verification. The function that represents the
adversary team simulates its behavior by choosing an
offensive or defensive action, depending on the control of the
ball is with the adversary or with it respectively. Random
values are set through select label variables of UPPAAL to
define which player will play, which actions will be executed
and if the selected actions to be executed can succeed or not.
So it was not necessary to create automata to represent the
adversary team which has simplified the modeling.

We used pseudorandom values and data structures to
confront the real situation of the match and the vision of each
player with respect to it. This enabled a simple representation
of the environment’s uncertainty (caused by non-determinism)
and the representation of the partial vision of the agents. An
example is the position of the ball which is only partial
determined by the agents and depends on their distances from
it. The vision of each agent of the ball position is defined by
the integer variable bP: int[0,5], as seen in Fig. 7. This
variable selects one value between 0 and 5 that corresponds to
the soccer field areas, according to the position of the player in
the field.

B. Verification of the plans

Due to the complexity of the system we defined a
modularization of the verification process at several stages
from simple plans to collective plans. This facilitated the
analysis of model checking results and allowed the detection
of errors in the subspaces of the whole model.

The process of verification of the cognitive and instinctive
plans was done in five stages: 1. Verification of common
properties related to common rules of all players or group of
players (defenders or midfield players or offensive players).
2. Verification of the individual plans which consist of the
particular rules of each agent in the team. 3. Modeling and
verification of the environment. 4. Verification of each agent
in communication with the environment. 5. Verification of the
entire team in communication with the environment.

For the verification of the individual plans of each player
we modularized the process, similarly as in composition
model checking technique assume-guarantee [11]: first we
assumed that the environment, the reactive layer and the
instinctive layer were correct and applied model checking to
the cognitive rules, and then we verified the instinctive rules
assuming now that the cognitive rules were correct. This
facilitated the analysis of the model checking and
identification of errors.

In Table III are presented the properties used to verify the
plans: safety (first and second line) and reachability properties
(third line). These rules are specified as processes in UPPAAL
which are instantiated according to the type of the rules as
specified by the BNFs in the table. The safety properties are
used to verify if the automata are free of deadlock (first line)
or if the automata are consistent with the rules (second line),
i.e., if the models had been constructed correctly. The
reachability properties are used to verify if any automata
location, corresponding to each cognitive or instinctive rule, is
achieved from the initial location to determine if these rules
are in fact used by the agents meaning that the reactive
behaviors are achievable and the player will drive them.

A. Some results of model checking

As a result of the verification of the individual agents the
occurrence of deadlock was observed in all players due to the
bad construction of a rule (rule_mark_hold_ball) which led all
plans to a cognitive state of the system in which there were no
transitions possible. In addition, some locations were
identified as not reachable in the instinctive rules, as for

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

101

example the state advance in the instinctive rule
Advanced_Pass_Ball_Forward due to an error in this rule
which was reflected in the model. After we had corrected the
identified errors, the results of the model checking of the
entire team showed that the model had preserved the
reachability properties already verified before.

TABLE III. PROPERTIES.

Description Formulae

1. Non-occurrence of deadlocks A not deadlock

2. In all paths never occurs that the

value of local goal current of the

player is different from X and the

location of the cognitive automaton

is e uivalent to .

A not (LocalGoalCurrent[<pNR>] != X

and P<pNR>_C.<CognitiveLocation>)

Ex: A not (LocalGoalCurrent[1] != 0

and P1_C.Mark)

3. Exist a path for any location from

the initial state.
E◊ P<pNR>_<Rule>

Ex: E◊ P1_C.Side_Attack

Where the symbols declared in < > are defined as:

<pNR> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11

<Rule> ::= C.<CognitiveLocation> | <InstinctiveRule>

<CognitiveLocation> ::= Mark | Advance | Side_Attack | Ending | None

<InstinctiveRule> ::= <TypeOfCognitiveRuleAssociated>
<AcronismAndInstinctiveRule>

<TypeOfCognitiveRuleAssociated> ::= A | M | SA | E

<AcronismAndInstinctiveRule> should be replaced by the name of an stinctive
rule (which trigger a corresponding reactive action) such as: SB.seach_ball ,

HB.hold_ball , etc.

Table IV shows some data about the verification. The
specification consisted of 47 rules (10 cognitive and 37
instinctive). A total of 161 automata were instantiated: 11
automata from cognitive rules (one for each player), 147
automata from instinctive rules and one automaton of the
environment. A total of 204 properties were checked. In the
verification of each individual player all properties were
checked but in relation to the complete team sate explosion
occurred in the verification of 63 properties. Despite this state
explosion situation, 141 properties (69.11%) were verified:
114 (80.85%) were satisfied and 27 (19.15%) were not
satisfied. The maximum verification time of a property was
27.83 hours and the minimum was 0.01 seconds,
approximated. It is worth mentioning that all the individual
rules were completed checked but when the rules were
processed collectively only the cognitive rules were
completely checked and approximately 50% of the instinctive
rules were not checked because of state explosion.

TABLE IV. TOTAL OF VERIFICATION.

Rules Automata Properties

47
10 cog.

37 inst.

161
11 cog.

149 inst.
1 env.

Quantity Data Time Data

Total 204 Minimum Maximum

Verified 141 Satisfied 114 ~0.01s

8,5931s

(~27.83h) Not satisfied 27

Not verified 63 - - -

VI. CONCLUSIONS

The verification of AAs and MASs plans is not
straightforward, it is normally a laborious and complex
activity.

This paper presented results of applying model checking
on the verification of the agent plans of a robot soccer
application with a three-tier architecture, where the
environment is nondeterministic, dynamic and has partial
vision. To minimize the state space explosion, some solutions
were applied relative to abstractions of the model and for the
process of verification. A modularization of the process of
verification was carried out considering an evolution of the
model from individual players to the whole team in order to
identify errors as soon as possible, which otherwise could be
difficult to interpret due to the size of the complete model.

The solutions proposed can be adapted for other similar
applications and as a future work we intend to devise an
interactive tool to support the development and verification of
multi-agent systems with similar characteristics of this one.

REFERENCES

[1] A. El Fallah Seghrouchni et al, “Modelling, Control and Validation of
Multi-Agent Plans in Dynamic Context”, AAMAS, vol. 1, pp.44-51,
Third International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1 (AAMAS'04), 2004.

[2] F. Marc, “Planification Multi-Agent sous Contraintes dans un Contexte
Dynamique: Application Aux Simulations Aériennes”, Thèse (Doctorat
en Informati ue), École Doctorale d’Informati ue, Télécommunication
et Électronique de Paris, Université Pierre et Marie Curie, 2005.

[3] T. A. Hezinger, “The Theory of Hybrid Automata”, 28p, Electronics
Research Laboratory, College of Engineering, University of California:
Berkeley, 1996.

[4] L. Khatib et al, “Verification of plan models using UPPAAL”, 1st
International Workshop on Formal Approaches to Agent-Based
Systems, Maryland, 2000.

[5] L. Khatib et al, “Mapping temporal planning constraints into timed
automata”, in: Proceeding of 8th International Syposium on Temporal
Representation and Reasoning, 249p, IEEE Computer Society : Cividale
Del Friuli, 2001.

[6] G. S. Costa, “Utilização da Verificação de Modelos para o
Planejamento de Missões de Veículos Aéreos não-Tripulados”,
Dissertação (Mestrado em Engenharia Elétrica) - IME, Rio de Janeiro,
2008.

[7] C. B. Earle et al, “Verifying Robocup Teams”, in: Proceeding of
MoChArt 2008, 5th International Workshop on Model Checking and
Artificial Intelligence, 189p, Patras, 2008.

[8] O. Santana Jr, C.F.G. Chavez, A. Loureiro da Costa, “MecaTeam
Framework: An Infrastructure for the Development of Soccer Agents for
Simulated Robots”, IEEE Latin American Robotic Symposium, LARS,
p 137-142, ISBN: 978-1-4244-3379-7, 2008.

[9] H. Kitano, "Robocup: The robot world cup initiative”, in Proc. of The
First International Conference on Autonomous Agent (Agents-97))
Marina del Ray, The ACM Press, 1997.

[10] G. Behrmann et al, “A Tutorial on Uppaal 4.0”, Department of
Computer Science, Aalborg University, 2006.

[11] A. Loureiro da Costa, G. Bittencourt, “From a concurrent architecture to
a concurrent autonomous agents architecture”, in: Third International
Workshop in RoboCup, Springer Lecture Notes in Artificial Inteligence
LNAI, 1856pp, pp.85-90, 1999.

[12] E. M. Clarke, O. Grumberg and D. A. Peled, “Model Checking”. The
MIT Press, 1999.

Botelho, Andrade, Barboza and Loureiro da Costa

102

Parte IV

Short Papers - Resumos
estendidos

Organizational Modelling of a Multiagent System
basead in a Theater Play

Tatiane Dobrzanski e Gleifer Vaz Alves
Departamento Acadêmico de Informática

Universidade Tecnológica Federal do Paraná (UTFPR)
Câmpus Ponta Grossa Av. Monteiro Lobato, s/n, km 4

84.016-210 – Ponta Grossa – PR – Brasil
E-mail: tatianedki@gmail.com

gleifer@utfpr.edu.br

Antônio Carlos da Rocha Costa
Programa de Pós-Graduação em Modelagem Computacional

Centro de Ciências Computacionais
Universidade Federal do Rio Grande (FURG)

Av Itália, Km 8 – Câmpus Carreiros – 96.201-900
Rio Grande – RS – Brasil

E-mail: ac.rocha.costa@gmail.com

Abstract—Defining the social organization of a multiagent
system (MAS) is a key point in agent modeling. This work
presents the structural organizational of a MAS by means of
MOISE+ model. The MOISE+ clearly defines three stages in
agents organization: structural, functional and normative. In
order to apply MOISE+ model we have chosen a (theater) play
(“Auto da Compadecida”, written by Ariano Suassuna), since
one can clearly identify and modeling elements, such as, agents
(characters), roles, links, missions, goals, social organization, as
well as, the own plot of the play.

I. INTRODUÇÃO

Sistemas orientados a agentes oferecem uma área promis-
sora para o desenvolvimento de aplicações cuja interação
e adaptabilidade a alterações no ambiente sejam essenciais
[9]. Uma das caracterı́sticas fundamentais destes sistemas é
a capacidade de ação autônoma flexı́vel de um agente em um
ambiente.

Os agentes possuem a habilidade de se organizar, formar
uma sociedade e dividir papéis e tarefas a fim de alcançar um
objetivo comum. Para isso, eles relacionam aspectos sociais
plausı́veis ao comportamento humano, como a cooperação,
coordenação e negociação [1], [9]. Sistemas multiagentes
(SMA) são formados por um número de agentes em ambiente
distribuı́do que levam em consideração essas caracterı́sticas
dos agentes [9].

Tendo as atribuições de um SMA, a sua modelagem é
essencial. Assim como existem técnicas da engenharia de
software aplicadas ao desenvolvimento de sistemas computa-
cionais, metodologias e ferramentas de abstrações surgiram
para sistemas orientados a agentes. Isso possibilitou a criação
de uma área exclusiva, a engenharia de software orientada a
agentes (do inglês, AOSE - Agent Oriented Software Engi-
neering) [5]. Desde então, metodologias de desenvolvimento e
modelos de organização de agentes têm sido propostas. Dentre
as metodologias existentes para agentes é possı́vel citar a
GAIA, Prometheus, Tropos e Agent UML.

A organização de um SMA deve ser considerada como
um aspecto central nestes sistemas. Ela especifica o conjunto
de papéis que os agentes podem adotar, o conjunto de rela-
cionamentos entre papéis, as normas, tarefas e compromissos
dos agentes no sistema [1]. Com o estabelecimento de uma
organização social é possı́vel restringir o comportamento dos

agentes, fazendo com que trabalhem em conjunto, cooperando,
coordenando e negociando atividades para alcançar a finalidade
do SMA. Como modelos de organização social de agentes
pode-se citar: AGR, OperA, PopOrg, MOISE e MOISE+.

Em comparação com os modelos citados acima, o MOISE+
estabelece a estrutura (papéis e grupos), o funcionamento
(esquemas sociais e missões) e as normas (obrigações e
permissões) da organização social de agentes [4]. Estes itens
compõem a especificação organizacional, que é instanciada
pelos agentes alocados no SMA, costituindo, deste modo, a
entidade organizacional.

Além disso, o MOISE+ possui a ferramenta da AOSE,
a plataforma Moise1, que possibilita simular a entidade or-
ganizacional. Esse modelo faz parte de um framework para
SMA chamado JaCaMo (JACAMO,2012). O JaCaMo faz a
integração do modelo de organização MOISE+ com a lin-
guagem de programação para agentes, denominada Jason,
através do compartilhamento distribuı́do de artefatos Cartago
(JACAMO, 2012). Dessa forma, tem-se uma ferramenta in-
tegrada para o desenvolvimento de agentes inteligentes.

Assim, o objetivo principal deste trabalho é definir a
especificação estrutural da modelagem organizacional de um
SMA através do MOISE+. A especificação funcional e deôntica
pode ser encontrada em [3]. O SMA escolhido foi extraı́do
de uma peça teatral (“Auto da Compadecida”, [7]), visto que
em uma peça consegue-se identificar os agentes (personagens),
papéis, ligações sociais, bem como o enredo da história.
Caracterı́sticas essas que vêm ao encontro, não somente da
meta principal deste trabalho, mas também de metas futuras,
como a aplicação de técnicas de Interactive Storytelling (ou
em uma tradução livre: história interativa) [8], [2].

O restante do artigo está dividido da seguinte forma: a
Seção II apresenta a organização de agentes através do modelo
MOISE+, com a definição da estrutura. A Seção III apresenta a
modelagem organizacional da peça “Auto da Compadecida” e
por fim, a Seção IV apresenta a conclusão do artigo.

1Neste artigo, o termo Moise refere-se a plataforma para simulação de
entidades organizacionais, sendo que o termo MOISE+ indica o modelo de
organização de agentes apresentado por [4].

Organizational Modelling of a Multiagent System based in a Theater Play

105

Fig. 1. Modelo MOISE+

II. MOISE+

O modelo MOISE+ proposto por [4] é centrado na
organização de agentes e, com isso, duas ideias principais
são definidas: a (i) especificação organizacional (EO) e a (ii)
entidade organizacional (EnO) (Figura 1 extraı́da de [4]).

A especificação organizacional determina a estrutura, o
funcionamento e as normas que regem a organização de
agentes. A sua instanciação pelos agentes alocados no sistema
estabelece a entidade organizacional.

Neste sentido, a especificação organizacional é formada
pelo conjunto de especificações estruturais (EE), funcionais
(EF) e deônticas (ED - também denominada normativa). A
EE é composta pelos papéis e grupos, a EF pelos esquemas
sociais e missões, e a ED pelas obrigações e permissões
que os agentes possuem na organização. Como o escopo
deste artigo reside apenas na especificação estrutural, a seguir,
são apresentados apenas os elementos que constituem essa
especificação, tais conceitos foram definidos em [4]. Contudo,
a modelagem completa (especificação estrutural, funcional e
dêontica) encontra-se em [3].

A. Especificação Estrutural

A especificação estrutural (EE) tem por objetivo determinar
os papéis, as interações entre papéis e os grupos cujos agentes
assumirão na organização.

O papel corresponde a função que o agente adota na
organização. Ele é o elo de ligação entre o agente e a
organização.

Os papéis podem apresentar herança, simplificando o pro-
cesso da especificação de papéis. A relação de herança ρ @ ρ′

indica que o super-papel ρ é uma generalização do sub-papel
ρ′ e o sub-papel ρ′ é uma especialização do super-papel ρ.
Um tipo especial de papel, denominado papel abstrato, possui
justamente o objetivo de simplificar a especificação de papéis
em uma organização, sendo que não pode ser assumido por ne-
nhum agente. Ademais, pode existir um super-papel comum a
todos os outros papéis, o papel social (ρsoc).

Ao assumir um papel, um agente pode interagir com
outros através de uma ligação, denotada por link(ρs, ρd, t),

constituı́da por um papel de origem (ρs), um de destino (ρd)
e um tipo de ligação (t).

Existem três tipos de ligações: (i) de conhecimento (acq);
(ii) de comunicação (com) e de (iii) autoridade (aut). A
ligação de conhecimento indica que o agente que assume o
papel de origem têm permissão para conhecer e influenciar
nas ações do que possue o papel de destino. A ligação de
comunicação permite a comunicação entre agentes e a de
autoridade determina que o papel de destino é subordinado
ao de origem. Toda ligação de autoridade implica a existência
de uma de comunicação, que, por sua vez, implica em uma de
conhecimento.

Um papel também pode ser compatı́vel com outro. De
acordo com a relação ρ1 on ρ2, define-se que o agente com
o papel ρ1 pode assumir o papel ρ2.

Apesar dos agentes adotarem um papel, eles somente o
assumirão dentro de um grupo. Um grupo é composto de
agentes com objetivos em comum. Uma especificação de
grupo (gt = (R,SG,Lintra, Linter, Cintra, Cinter, np, ng))
estabelece os papéis que podem ser assumidos no grupo
(R), os sub-grupos (SG) pertencentes ao grupo, as ligações
internas e externas ao grupo (Lintra, Linter), as compatibili-
dades internas e externas (Cintra, Cinter) e a cardinalidade de
papéis, com os respectivos valores máximo e mı́nimo, além
da cardinalidade dos sub-grupos definidos na especificação de
grupo.

Em uma ligação interna (Lintra), sendo l ∈ Lintra, todos
os agentes que assumem o papel de origem da ligação l em um
grupo gr1 estão ligados por a todos os agentes que assumem o
papel de destino da ligação l no mesmo grupo gr1. Um ligação
externa (Linter) estabelece que todos os agentes que possuem
um papel de origem estão ligados a todos os agentes que
assumem o papel de destino, independentemente dos grupos
em que os agentes assumem os papéis de origem e destino.
Toda Linter ocasiona em uma Lintra.

A compatibilidade interna (Cintra), pode-se dizer que um
agente com um papel ρ1 de um grupo gr1 pode adotar um outro
papel ρ2 no mesmo grupo. Se a compatibilidade for externa
(Cinter) um agente ρ1 em um grupo gr1 pode assumir um
outro papel ρ2 em outro grupo gr2.

III. MODELAGEM ORGANIZACIONAL

A peça teatral “Auto da Compadecida” foi escrita por Ari-
ano Suassuna em 1955 [7]. Baseada nos romances e histórias
populares do sertão nordestino brasileiro, ela relata a história
de dois amigos que juntos aprontam confusões que envolvem
desde o padeiro da cidade e sua esposa, a Igreja, cangaceiros
até Jesus Cristo e Nossa Senhora.

Essa Seção apresenta a especificação estrutural conforme
o modelo MOISE+ de um SMA baseado nesta peça. Através
do livro de [7], foram definidos papéis, a relação de herança,
as ligações e compatibilidades que compõem uma organização
de agentes.

A. Papéis e Grupos

A Figura 2 apresenta um diagrama da especificação estrutu-
ral da peça “Auto da Compadecida”. Por meio dela, é possı́vel

Dobrzanski, Alves and Rocha Costa

106

Fig. 2. Especificação estrutural da peça Auto da Compadecida

identificar o conjunto completo de papéis, grupos, compatibil-
idades internas e externas, além das ligações internas.

Analisando as funções que os personagens exercem na
peça, foram definidos os seguintes papéis: Auxiliar de padeiro
(ρauxiliar), Picaresco (ρpicaresco), Padeiro (ρpadeiro), Esposa
(ρesposa), Jesus (ρjesus), Compadecida (ρcompadecida), Bispo
(ρbispo), Frade (ρfrade), Padre (ρpadre), Sacristão (ρsacristao),
Cangaceiro (ρcangaceiro), Cabra (ρcabra) Demônio (ρdemonio)
e Diabo (ρdiabo). Dentre estes papéis, destaca-se o de Auxiliar,
Picaresco, Cangaceiro e Cabra.

Na peça, os personagens Chicó e João Grilo trabalham na
padaria auxiliando o padeiro, deste modo, representam o papel
de auxiliar (ρauxiliar) na organização. Além disso, como os
dois aprontam trapaças e confusões para sobreviver a fome
e a pobreza, eles representam tı́picos heróis picarescos da
literatura nordestina [6], comportando o papel de picaresco
(ρpicaresco). Portanto, pode-se assumir que o papel de auxiliar
é compatı́vel com o de picaresco (ρauxiliar on ρpicaresco) e
vice-versa (ρpicaresco on ρauxiliar).

O personagem Severino é um cangaceiro, assim como seu
comparsa, o Cabra. No entanto, Severino tem autoridade sobre
o Cabra, por isso os dois não podem assumir o mesmo papel
(de cangaceiro). Para identificar essa ligação de autoridade,
foi atribuı́do os papéis de cangaceiro e cabra aos personagens
(ρcangaceiro, ρcabra), sendo que o papel de cabra é compatı́vel
com o de cangaceiro (ρcabra on ρcangaceiro).

Observando a interação dos personagens verifica-se a
relação de herança. Um bispo possui todos os atributos de
um padre, sendo portanto, uma especialização do papel de
padre (ρpadre @ ρbispo). Além disso, todos os papéis são
especializações um papel abstrato social (ρsoc).

Todos os papéis pertencem a um, dos cinco grupos:
(i) Padaria (gtpadaria); (ii) Igreja (gtigreja); (iii) Can-
gaceiros (gtcangaco); (iv) Tribunal (gttribunal) e (v) Pi-
carescos (gtpicaresco). O conjunto de especificações destes
grupos (gtautodacompadecida) e o conjunto de papéis

(Rautodacompadecida) constituem a especificação estrutural
(ssautodacompadecida) do SMA, conforme apresentado abaixo:

ssautodacompadecida =
〈{gtautodacompadecida}, Rautodacompadecida,@〉

A especificação do grupo auto da compadecida
(gtautodacompadecida) é bem formada se existir um, e
somente um grupo (i) padaria, cangaço, tribunal, igreja e
picaresco. O grupo padaria é considerado bem formado se
existir apenas um padeiro, uma esposa e dois auxiliares. O
grupo igreja é bem formado se comportar apenas um bispo,
um frade, um padre e um sacristão. O grupo cangaço é bem
formado se existir um cangaço e um cabra. O grupo tribunal
é bem formado se houver um jesus, uma compadecida, um
demônio e um diabo. O grupo picaresco é bem formado se
existir dois e no máximo dois picarescos.

IV. CONCLUSÃO

Este trabalho apresenta a especificação estrutural da mod-
elagem de um sistema multiagente baseado na peça “Auto da
Compadecida” através do modelo de organização de agentes
MOISE+.

Por meio deste modelo foi possı́vel definir a estrutura,
o funcionamento e as normas que regem o comportamento
dos agentes, através da definição de papéis, das ligações entre
papéis, relação de herança, das compatibilidades e dos grupos.
Deste modo, foi possı́vel analisar como os agentes se organi-
zam no sistema. A peça “Auto da Compadecida” adaptou-se ao
contexto de modelagem de agentes, visto que cada personagem
da peça adotou um ou mais papéis, participou de grupos.

Por fim, é possı́vel enumerar alguns trabalhos futuros:
(i) Definição de esquemas sociais de forma que suportem
variações de enredo; (ii) Aplicação de técnicas de IS; (iii)
Implementação dos agentes através da linguagem Jason; (iv)
Uso do framework JaCaMo.

REFERENCES

[1] BARBOSA, R. D. M. (2011). Especificação formal de organizações de
sistemas multiagentes. PhD Thesis, Universidade Federal do Rio Grande.

[2] CAVAZZA, M., CHARLES, F. and MEAD, S. J. (2010). Character-based
interactive storytelling. IEEE Intelligent Systems, v. 17, p. 17-24.

[3] DOBRZANSKI, T. (2013). Modelagem organizacional de um sistema
multiagente através do modelo MOISE+. Trabalho de Conclusão de
Curso, Universidade Tecnológica Federal do Paraná, Câmpus Ponta
Grossa.

[4] HÜBNER, J. F. (2003). Organização de Sistemas Multiagentes. PhD
Thesis, Escola Politécnica, USP, São Paulo.

[5] JENNINGS N. R.; WOOLDRIDGE, M. (2000). Agent-oriented software
engineering. Handbook of Agent Technology. Anais AAAI/MIT Press.

[6] PINHEIRO, S. R. (2002). O gótico e a picaresca se entrecruzam em
cena cinematográfica do Auto da Compadecida de Ariano Suassuna.
Proceedings of the 2 - Congresso Brasileiro de Hispanistas, v. 2.

[7] SUASSUNA, A. (2005). Auto da Compadecida. Agir, Rio de Janeiro.
[8] VUONO, V. (2008). Interactive storytelling via intelligent agents. CSRS

2008 - 2nd Villanova University Undergraduate Computer Science Re-
search Symposium, v. 2.

[9] WOOLDRIDGE, M. (2009). An introduction to multiagent systems. ed.
2, Wiley Publishing.

Organizational Modelling of a Multiagent System based in a Theater Play

107

Modeling Software Project Management with Norms
and Reputation

Davy Baı́a
Pontifı́cia Universidade Católica

(PUC-RIO)
Departamento de Informática

Rio de Janeiro, RJ
Email: davybaia@gmail.com

Elder Cirilo
Pontifı́cia Universidade Católica

(PUC-RIO)
Departamento de Informática

Rio de Janeiro, RJ
Email: ecirilo@inf.puc-rio.br

Carlos Lucena
Pontifı́cia Universidade Católica

(PUC-RIO)
Departamento de Informática

Rio de Janeiro, RJ
Email: lucena@inf.puc-rio.br

Abstract—The development of software projects and its results
have received substantial attention from academia in the past
years, mostly due to the fact that projects frequently do not
achieve their expected results. Recent researches has highlighted
how crucial the project manager efficiency is, in terms of
project management since its activities have a straight impact
in improving the success of such projects. Accomplishing such
management activities in an efficient way, however, has been a
challenge for most project managers. Through this paper, we
propose the creation of a set of agents by applying norms and
reputation concept in order to assist the project manager. We
use norms to support the manager in the process of knowledge
composition whereas reputation gives a better overview of each
human resources in the project. Furthermore, to evaluate the
proposed set of agents, we conducted exploratory case study,
providing a detailed description of how the set of agents acted in
a project simulation.

I. INTRODUÇÃO

O desenvolvimento de software em grandes organizações
é uma atividade que envolve equipes que trabalham de forma
colaborativa na resolução de problemas que muitas vezes não
são triviais. Os membros destas equipes seguem processos de
desenvolvimento definidos pela organização na qual trabalham.
Geralmente essas equipe possuem o papel de gerente de
projetos, com o objetivo de conduzir o projeto e ou equipe,
onde algumas de suas atividades são: alocar recursos, ajustar
as prioridades, monitorar e controlar a evolução e manter a
equipe do projeto concentrada na meta a ser alcançada[1].
Para realizar estas atividades com eficiência é necessário um
conhecimento sobre o andamento do projeto e seus recursos.
Por exemplo, uma das atividades do gerente de projeto é
atribuir tarefa para cada membro da equipe. Para garantir a
melhor alocação, tal atividade requer um conhecimento prévio
dos recursos (pessoas). Caso contrário, isto é, atribuir uma
tarefa para uma recurso que não está apto podem acarretar
sérios problemas, como atrasos nas entregas ou entregas não
bem sucedidas.

As atividades envolvem geralmente uma grande quantidade
de informações, principalmente no contexto dos grandes pro-
jetos de software. Nesses casos, o registro e a análise manual
dos dados tornam-se inviável, tanto pelo risco de ocorrência
de erros decorrentes de falhas humanas, quanto pelo custo
envolvido. Alguns estudos indicam que os projetos de TI
continuam a ter uma taxa alta de insucesso [2] [3]. Existem

evidências crescentes de que as habilidades do gerente de
projeto pode ser fundamental para um desempenho eficiente
e eficaz do projeto da equipe, melhorando seus resultados
[4]. Para auxiliar as atividades do gerente de projeto, se faz
necessário a existência de ferramentas automatizadas.

Existem tendências no uso de agentes para assumir de-
terminadas tarefas. Assim, acreditamos que podemos utilizar
agentes em ferramentas automatizadas para incorporar conhec-
imentos do gerente de projetos, auxiliando em suas atividades.
Neste trabalho, modelamos as regras de avaliação do desem-
penho do recurso através de normas e o perfil do desenvolvedor
através de sua reputação. Assim, podemos criar um sistema que
auxilie o gerente de projeto a avaliar e equilibrar o ambiente
de desenvolvimento em relação as atividades dos recursos.
A utilização de sistema multiagente se torna essencial, pois
oferece um abstração necessária para modelar o problema e
automátizá-lo computacionalmente.

Para finalizar o processo e manter um ciclo de recon-
hecimento é utilizado o conceito de reputação. Por fim, para
compreender o impacto da utilização de agentes com normas
e reputação em ferramentas de auxı́lio ao gerente de projetos,
foi realizado um estudo exploratório. O estudo foi execu-
tado através da simulação de um projeto. Resultados iniciais
mostraram indicação positiva da utilização de agentes para
auxiliar o gerente de projetos.

O documento está subdividido em Seções onde a Seção II
é contextualizado Agente de Reputação baseado em Normas;
a Seção III apresenta um cenário para aplicação das normas e
sua descrição, assim como os resultados iniciais e perspectivas
da aplicação do Agente de reputação; e por fim, na Seção IV
o trabalho é finalizado com as considerações finais e trabalhos
futuros.

II. AGENTE DE REPUTAÇÃO BASEADO EM NORMAS

Normas especificam padrões de comportamento represen-
tado por ações a serem executadas [5], [6]. Em outras ocasiões,
padrões de comportamento são especificados através de obje-
tivos que devem ser satisfeitos ou evitados. Nesse contexto,
um agente pode assumir uma atividade do gerente de projeto,
como por exemplo, acompanhar a evolução das atividades e
seu estado por recurso (pessoas). Para isso, podemos utilizar
normas como forma de modelar o que o gerente de projetos
espera dos seus recursos (pessoas). Porém, para finalizar o

Modeling Software Project Management with Norms and Reputation

109

processo usamos a reputação para verificar se o recurso está
de fato seguindo as normas.

De acordo com o dicionário Oxford, reputação é o que se
diz ou se acredita sobre as qualidades de alguém ou alguma
coisa. Sistemas de reputação apoiam a formação de reputação,
pois o indivı́duo começa a trabalhar de forma a aumentar
sua reputação [7]. Os sistemas analisam o comportamento das
pessoas para calcular pontos de reputação, que são publicados
para a comunidade [8]. Por exemplo, no ebay o vendedor
bem reputado obtém mais créditos para as suas ofertas. Como
resultado, os vendedores investem em reputação e se comportar
bem para sempre ter esse créditos, além de se um chancela
de confiança. O uso de reputação pode ajudar o gerente de
projeto em acompanhar a evolução de um recurso, ajustar a
distribuição de novas atividades, recompensar os recursos e
equilibrar o estado das atividades por recurso. Além disso, o
próprio recurso trabalhará de forma a aumentar sua reputação,
com isso mitigando a atividade do Gerente de projeto, pois
o próprio recurso se autogerência . Na próxima seção iremos
descrever um cenário de como foi a utilização de normas para
modelar o que o gerente de projetos espera dos seus recursos.

III. CENÁRIO

Nesta Sessão apresentaremos um cenário para utilização
de agentes de reputação baseados em normas para auxiliar o
gerente de projeto. A Figura 1 ilustra o sistema multi-agente,
temos para cada papel um conjunto de normas e um agente.
A reputação é gerada de acordo com o comportamento do
recurso, se o recurso seguir as normas sua pontuação é elevada,
caso ao contrario sua pontuação será baixada. Por exemplo, se
o Recurso A tem atividades no estado KZW, e essas atividades
correspondem uma porcentagem menor que X% do total de
atividades, então o Recurso A é obrigado a aumentar para
X+Y%. Caso Recurso A aumente para o desejado ele tem
uma bonificação se não ele tem uma penalidade.

Fig. 1. Sistema Multi-Agentes

Na Seção seguinte descreveremos as normas como forma
de recompensa e punição para os recursos envolvidos. O es-
copo desse cenário abrange o acompanhamento das atividades
por recurso x atividade por estado.

A. Normas para estados da atividade e atividades por recurso

As atividades são tarefas a serem entregues ao qual é
atribuı́da a um recurso. Cada atividade possui um estado,
são esses: Assigned, Closed, Resolved, Submitted, Opened e
Activated . Para cada projeto, o gerente precisa manter um
equilı́brio sobre a porcentagem de atividades por recurso e seus
estados, ajustar a distribuição das atividades e recompensar os
recursos. Sendo estas, algumas das atividades que pode ser
auxiliada por um agente. Para isso, utilizamos normas como
forma de transcrever o que o gerente de projeto espera dos seus
recursos. As normas possuem suas recompensas e punições,
desta forma podemos gerar uma reputação para verificar se as
normas estão sendo cumpridas. Assim, a reputação do recurso
auxilia o gerente de projeto a verificar se de fato está sendo
realizado o que é necessário para manter o equilbrio. Com
isso, o gerente de projetos pode tomar decisões de acordo com
a reputações geradas e os recursos podem seguir as normas
para aumentar sua reputação. Desta forma, o agente assume
o conhecimento e desejo do gerente de projeto, auxiliando
em sua atividade. A fim de cumprir as metas do projeto, os
estados supracitados possuem suas normas. Cada estado possui
um limite em porcentagem ao qual o recurso precisa manter.
O limite aplicado nesse trabalho foi a mediana. Porém, esses
limites podem ser alterados de acordo com os objetivos do
projeto. A escolha da mediana é justificada pelo fato de atender
a nossa pesquisa.

Para o não cumprimento de cada norma existe uma
punição e para o cumprimento existe uma recompensa. Por
fim, assumiremos que cada recurso está associado a uma
reputação, logo, o objetivo de cada recurso é aumentar ou
manter sua reputação. Para isso, foi definido um conjunto de
normas. Nesse artigo iremos tratar apenas a demonstração das
normas para geração da reputação do recurso com o papel
de desenvolvedor. As seguintes normas consideradas para o
desenvolvedor foram:

(Norma 1): Se o Recurso X tem atividades no estado
Assigned, e essas atividades possuem uma porcentagem menor
que 26% do total de atividades, então o Recurso X é obrigado
a aumentar para 26%.

• (Recompensas): Se estiver acima de 26%, a reputação
do Recurso X aumenta um ponto.

• (Punições): Se estiver abaixo dos 26%, a reputação do
Recurso X diminui um ponto.

(Norma 2): Se o Recurso X tem atividades no estado Closed, e
essas atividades possuem uma porcentagem menor que 7% do
total de atividades, então o Recurso X é obrigado a aumentar
para 7%.

• (Recompensas): Se estiver acima de 7%, a reputação
do Recurso X aumenta um ponto.

• (Punições): Se estiver abaixo dos 7%, a reputação do
Recurso X diminui um ponto.

(Norma 3): Se o Recurso X tem atividades no estado Resolved,
e essas atividades possuem uma porcentagem menor que 8%
do total de atividades, então o Recurso X é obrigado a
aumentar para 8%.

Báıa, Cirilo and Lucena

110

• (Recompensas): Se estiver acima de 8%, a reputação
do Recurso X aumenta um ponto.

• (Punições): Se estiver abaixo dos 8%, a reputação do
Recurso X diminui um ponto.

(Norma 4): Se o Recurso X tem atividades no estado Submit-
ted, e essas atividades possuem uma porcentagem menor que
51% do total de atividades, então o Recurso X é obrigado a
aumentar para 51%.

• (Recompensas): Se estiver acima de 51%, a reputação
do Recurso X aumenta um ponto.

• (Punições): Se estiver abaixo dos 51%, a reputação do
Recurso X diminui um ponto.

(Norma 5): Se o Recurso X tem atividades no estado Ac-
tivated, e essas atividades possuem uma porcentagem menor
que 1% do total de atividades, então o Recurso X é obrigado
a aumentar para 1%.

• (Recompensas): Se estiver acima de 1%, a reputação
do Recurso X aumenta um ponto.

• (Punições): Se estiver abaixo dos 1%, a reputação do
Recurso X diminui um ponto.

Essas normas foram implementadas em Java com Jade
e foram simuladas em uma base histórica de um projeto.
Demostraremos seus resultados na sessão seguinte.

B. Resultados Iniciais e Perspectivas

As normas e o agente de reputação foram aplicados em uma
base histórica, fornecida pela IBM. Foi criada uma simulação
onde em uma determinada fatia de tempo o agente verificava
as atividades e seu estado e pontuava de acordo com o
cumprimento das normas. A Figura 2 demostra a evolução
do recurso Developer 3.

Fig. 2. Evolução do Desenvolvedor 3

Podemos observar a reputação do Developer 3 em um
certo ponto era negativa e depois ficou positiva. O gerente
de projeto, com esses dados, poderia tomar decisões para
atribuições de novas atividades para o desenvolvedor. Como
por exemplo, depois de verificar a reputação negativa, o
gerente de projeto poderia investigar o motivo. Supondo que
o motivo foi atribuições de atividades com complexidade alta
para tal desenvolvedor, o gerente poderia atribuir atividades

mais simples para que a porcentagem das atividades no estado
Resolved aumentasse. Com isso, a reputação do desenvolvedor
poderá ser melhorada. Por outro lado, em posse da reputação,
o desenvolvedor poderia agir de tal formal que sua reputação
melhorasse, por exemplo, identificar quais normas não estão
sendo cumpridas e verificar o que pode ser feito para pontuar.
A continuação da analise segue o exemplo do recurso Devel-
oper 3, pois as considerações e criticas a esse exemplo servem
como base para o analisarmos o restante dos recursos.

IV. CONCLUSÃO

Alguns fatores são determinantes para o sucesso ou fra-
casso de um projeto. Um desses fatores são as decisões
tomadas pelo gerente de projetos para atingir as metas. Para
auxiliar nessas decisões e nas tarefas do gerente de projeto,
identificamos que um acompanhamento adequado com um
conjunto de agentes contribui para alcançar essas metas. Para
isso, sua criação deve seguir um método estruturado e definido.
Neste contexto, foi utilizado normas para gerar a reputação.
O conjunto de agente foi aplicado em um estudo de caso
exploratório. Com isso, obtivemos indı́cios positivos que a
utilização de agentes pode auxiliar o gerente de projeto em
suas atividades. A realização do estudo de caso serviu como
uma primeira avaliação da utilidade dos agentes para auxiliar
o gerente de projeto. Pode-se concluir, então, que o estudo
apresentado serviu como indicação positiva que aplicação de
normas através de agentes por ser estudado mais profunda-
mente em gerenciamento de projeto de software.

REFERENCES

[1] PMBOK, A Guide To The Project Management Body Of Knowledge -
PMBOK Guides, PMI, Ed. Project Management Institute, 2008.

[2] D. Rubinstein, “Standish group report: There’s less development
chaos today,” Software Development Times, 2007. [Online]. Available:
http://pdd.citsolutions.edu.au/Clients/DOGPM/documentation/Standish
Group Chaos Article 2006.pdf.pdf

[3] A. Budzier, “Why your it project may be
riskier than you think,” 2012. [Online]. Available:
http://www.researchgate.net/publication/225070625 Why your IT proje
ct might be than you think/file/d912f4fc5f0ec7434f.pdf

[4] H. Taylor and J. P. Woelfer, “Leadership behaviors in information
technology project management: An exploratory study,” in Proceedings
of the 2011 44th Hawaii International Conference on System Sciences,
ser. HICSS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2011.280

[5] V. T. Silva, “From the specification to the implementation of
norms: an automatic approach to generate rules from norms to
govern the behavior of agents,” Autonomous Agents and Multi-Agent
Systems, vol. 17, no. 1, pp. 113–155, Aug. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10458-008-9039-8

[6] G. Boella and L. van der Torre, “Substantive and procedural
norms in normative multiagent systems,” J. Applied Logic,
vol. 6, no. 2, pp. 152–171, 2008. [Online]. Available:
http://icr.uni.lu/leonvandertorre/papers/jal08.pdf

[7] C. Prause and M. Eisenhauer, “First results from an investigation into
the validity of developer reputation derived from wiki articles and source
code,” in Cooperative and Human Aspects of Software Engineering
(CHASE), 2012 5th International Workshop on, 2012, pp. 126–128.

[8] A. John H. Baumertsang, R. Ismail, and C. Boyd, “A survey of trust
and reputation systems for online service provision,” Decis. Support
Syst., vol. 43, no. 2, pp. 618–644, Mar. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.dss.2005.05.019

Modeling Software Project Management with Norms and Reputation

111

Integrating the Organizational Model Moise+ to a
Cognitive Agent Architecture applied to Robocup

Simulator 2D

Mateus Paiva Fogaça
Centro de Ciências Computacionais - C3

Universidade Federal do Rio Grande - FURG
Rio Grande – RS – Brazil

Email: mateus.p.fogaca@gmail.com

Eder Mateus Gonçalves
Centro de Ciências Computacionais - C3

Universidade Federal do Rio Grande - FURG
Rio Grande – RS – Brazil

Email: edergoncalves@furg.br

Resumo—This paper presents the initial results integrating the
organizational model Moise+ to a cognitive agent architecture
once instantiated the UvA Trilearn agent applied to Robocup
Simulator 2D. At this moment, the main goal is to equate the
team performance using an explicit organization compared to
the same team considering the social aspects specification in an
implicit form. From this integration, it is expected a more simple
way to input a social organization to the team development.

I. INTRODUÇÃO

Um sistema multiagente (SMA) é especificado e imple-
mentado a partir de três dimensões básicas: os agentes em si,
os mecanismos de interação e comunicação entre os agentes
e destes com o ambiente, e sua organização social. Destas
dimensões, apenas os aspectos relacionados ao desenvolvi-
mento interno dos agentes são naturalmente especificados de
maneira explı́cita no projeto. No entanto, os aspectos relaci-
onados a interação e comunicação dos agentes, bem como
sua organização social, podem ser especificados de maneira
implı́cita ao sistema ao qual farão parte.

Impor uma determinada organização a um grupo de agentes
dar-se-á no sentido de estabelecer de forma explı́cita uma ou
mais metas, sejam elas de contexto local aos agentes ou global
ao sistema. Nesse caso, o papel da organização é permitir a
um observador externo que se entenda para que propósito o
sistema tende [1].

Em [2] é proposta uma arquitetura de agente que apresenta
três nı́veis decisórios: nı́vel reativo, nı́vel instintivo e nı́vel
cognitivo. O nı́vel reativo é composto por um conjunto de
comportamentos de baixo nı́vel que implementam as habilida-
des necessárias para que o agente atue no ambiente. O nı́vel
instintivo tem a função de identificar os estados do ambiente
e definir qual o comportamento ativo no nı́vel reativo. Além
disso, estas informações de estado devem ser enviadas para o
nı́vel cognitivo que as utiliza, juntamente com a meta global
do SMA, para determinar as metas individuais do agente.
Estas metas individuais correspondem a estados desejados que
devem ser alcançados pelos agentes. A escolha do melhor
estado é feita a partir de um conjunto de funções preditivas
que selecionam a melhor ação a ser tomada pelo agente. Esta
seleção considera apenas o subconjunto de ações restringida
pela modelo de organização.

A Robocup é uma entidade que visa estabelecer dire-
trizes para pesquisas nas diferentes áreas do conhecimento
que viabilizam o desenvolvimento de artefatos robóticos em
torno de problemas comuns. Um destes problemas padrão
é a construção de equipes de futebol de robôs, reais e/ou
virtuais. Entre as competições organizadas, tem-se aquelas
voltadas para aspectos de software. No caso da simulação em
2D, tem-se uma excelente plataforma para desenvolvimentos
envolvendo SMA’s. A plataforma é denominada Soccerserver
[3].

Este artigo apresenta a integração do modelo organiza-
cional Moise+ à arquitetura de agente cognitivo proposto
em [2]. Esta arquitetura é implementada tendo como base o
agente UvA Trilearn [4], especialmente em seus componentes
reativos, e que possui uma estrutura base adequada aquela
proposta em [2]. O FURGBol-Sim é resultado da integração
destas abordagens. Neste trabalho, apresenta-se os resultados
iniciais desse processo de integração, onde o objetivo é igua-
lar a performance do FURGBol-Sim com organização social
com do código base UvA Trilearn. Isto é feito extraindo a
organização social implı́cita ao UvA Trilearn e aplicando ao
FURGBol-Sim utilizando o Moise+.

Este artigo é estruturado da seguinte forma. A próxima
seção descreve a arquitetura interna do agente utilizado
no FURGBol-Sim, e a seção III descreve como dá-se o
aproveitamento do código fonte do UvA Trilearn para esta
implementação. A seção IV descreve como dá-se a extração
da organização social implı́cita ao código do UvA Trilearn
e sua especificação e inserção no código segundo o modelo
Moise+. A seção V descreve os resultados do processo de
integração e a seção VI apresenta as conclusões deste trabalho
e as perspectivas de futuros trabalhos.

II. ARQUITETURA DE AGENTE AUTÔNOMO
CONCORRENTE

Nesta seção busca-se apresentar as caracterı́sticas da ar-
quitetura interna dos agentes que compõem o FURGBol-Sim,
independente do modelo de organização SMA adotado.

Um ambiente complexo, como o Soccer Server, exige
soluções que agreguem aspectos de baixo nı́vel, formado por
comportamentos reativos que atendam restrições de tempo

Integrating the Organizational Model Moise+ to a Cognitive Agent Architecture applied to Robocup

Simulator 2D

113

real, bem como aspectos deliberativos que permitam tratar
com questões de planejamento e atendimento de metas, por
exemplo. Não obstante, o agente deve estar inserido em um
contexto social que permita compartilhar seus planos e metas.
Nesse sentido, propõe-se um modelo de agente cognitivo,
denominado agente autônomo concorrente [2], que apresenta
três nı́veis decisórios: reativo, instintivo e cognitivo como
descrito na figura 1.

Comportamento Selecionado

Percepção

Mensagens /

Ação

Percepção

Informação SimbólicaMetas Locais

Nível Cognitivo

Nível Instintivo

Nível Reativo

Figura 1. Arquitetura genérica de agente cognitivo

O nı́vel reativo permite a interação do agente com o
ambiente, tratando dos aspectos de percepção e ação. Deste
modo, este nı́vel é responsável pelo tratamento das restrições
de tempo-real do agente. É formado por um conjunto de
comportamentos reativos, que encapsulam as habilidades fun-
damentais do agente para atuar no ambiente. No caso do
Soccer Server, citam-se como habilidades fundamentais, entre
outras, passar, chutar, correr, marcar, interceptar a bola. Estes
comportamentos podem ainda serem vistos como um nı́vel
de abstração hierárquico superior aos comandos básicos do
ambiente.

O nı́vel instintivo tem como funções básicas reconhecer
o estado do jogo e executar a meta local do agente, que no
âmbito do modelo Moise+ corresponde a especificação de
uma missão. A execução da meta local, ou missão, é dada
pela seleção de uma seqüência de comportamentos reativos que
levam o estado atual do jogo a um estado desejado. A meta
local permanece válida enquanto determinados parâmetros
associados ao estado atual do jogo são verificados. Quando
o estado do jogo muda, seja para um estado desejado ou não,
uma nova meta local deve ser selecionada.

O nı́vel cognitivo tem a função de integrar o agente
no SMA, coordenando objetivos coletivos com seqüências
de ações individuais. Deste modo, o nı́vel cognitivo trans-
forma as metas globais em metas locais, por intermédio de
uma instanciação da especificação funcional (FS) do modelo
Moise+, segundo os papéis que possui e o grupo ao qual
o agente pertence. Comparado aos nı́veis inferiores, o nı́vel
cognitivo possui restrições de tempo real mais brandas, o que
permite a execução de tarefas mais complexas. A escolha da
meta local dá-se por intermédio de um conjunto de funções
preditivas do ambiente, que escolhem dentro do subconjunto
de ações do ambiente, previamente restrita pelo modelo de
organização, aquela que leva ao melhor estado futuro do
ambiente, segundo as metas globais do SMA.

III. UVA TRILEARN

A arquitetura descrita na seção anterior é implementada a
partir do código base do UvA Trilearn [4], que possui uma
arquitetura de baixo nı́vel, referente aos nı́veis hierárquicos
mais próximos do ambiente, muito similar ao agente autônomo

Percepção
Atuador

Controle de

Raciocínio

Modelagem
Refinamento

de Ação

atuadoressensores

Camada de Controle

Camada de Habilidades

Camada de Interação

Figura 2. Arquitetura do Agente UvA Trilearn

concorrente. A arquitetura do UvA Trilearn é descrita pela
figura 2.

A mais inferior é a Camada de Interação, que trata da
interação do agente com o ambiente. A Camada de Habilida-
des usa a funcionalidade oferecida pela camada de interação
para construir um modelo abstrato do mundo e para implemen-
tar os comportamentos dos agentes. A Camada de Controle
contém os componentes deliberativos do agente. Sua função é
escolher a melhor ação na camada de habilidades de acordo
com o modelo de mundo e atual estratégia do agente.

O agente UvA Trilearn é implementado em C++ com su-
porte nativo em sistema operacional Linux, constituı́do por três
threads: uma para percepção, uma para atuação, e outra para
deliberação. A principal vantagem desta abordagem garantir
um mı́nimo atraso em operações de entrada e saı́da com o
servidor de simulação.

Para utilizar o UvA Trilearn como código fonte base,
o objetivo é determinar uma estratégia de deliberação que
garanta a escolha da melhor ação dado o modelo de mundo
atual.

O mapeamento entre a arquitetura do agente autônomo
concorrente e a implementação do UvA Trilearn é praticamente
direta. A camada de interação mais o componente de refina-
mento de ação da camada de habilidades do UvA Trilearn cor-
respondem ao nı́vel reativo do agente autônomo concorrente. O
componente de modelagem da camada de habilidades do UvA
Trilearn implementa a função de identificação de estado do
nı́vel instintivo do agente autônomo concorrente. Finalmente,
as funções restantes do nı́vel instintivo mais o nı́vel cognitivo
do agente autônomo concorrente devem ser implementados na
camada de controle do UvA Trilearn.

IV. MODELO DE ORGANIZAÇÃO MULTIAGENTE

O FURGBol-Sim é implementado segundo uma aborda-
gem top-down, ou seja, da especificação social, que regula
as relações entre os agentes que compõem a equipe, em
direção as camadas mais baixas de implementação do agente,
considerando que este possui uma arquitetura hierárquica que
apresenta ambos aspectos, deliberativo e reativo. Deste modo,
a descrição da equipe parte da especificação do SMA e de seu
modelo de organização.

A idéia básica de um SMA é permitir que um grupo
organizado de agentes cooperem na resolução de problemas
que estão além das capacidades de resolução individual de cada

Gonçalves and Fogaça

114

um deles. No entanto, esta definição contrapõem dois aspectos
fundamentais da distribuição de problemas: buscar as metas
do SMA e a autonomia dos agentes. A organização formal
de um SMA permite identificar e ajustar o equilı́brio entre
estes dois aspectos, por meio de um conjunto de restrições
comportamentais adotada pelos agentes. Uma boa organização
consiste em determinar um espaço de busca de ações menor
que aquele determinado pelo ambiente, que corresponde a
todos os mapeamentos entre percepções e ações, porém maior
que aquele que leve a finalidade do SMA, de modo a respeitar
a autonomia dos agentes [5].

Uma classificação para os modelos organizacionais divide-
os em modelos baseados na dimensão funcional, estrutural
e deôntica. Os modelos funcionais operam no sentido de
alcançar as metas globais do sistema. Os modelos estruturais
focam-se em conceitos como papéis e grupos para organizar
os agentes. Já os modelos deônticos baseiam-se na definição
de normas e permissões dentro do SMA.

Para o FURGBol-Sim, o modelo adotado é o Moise+. Este
modelo organizacional foi selecionado uma vez que é o único
que aborda as três dimensões, estrutural, funcional e deôntica.
Segundo o modelo Moise+, as três dimensões organizacionais
formam uma Especificação Organizacional (OS, do inglês
Organisational Specification). Quando os agentes adotam uma
determinada OS, eles formam um Entidade Organizacional
(OE, do inglês Organisational Entity).

A Especificação Estrutural (SS, do inglês, Structural Spe-
cification) do modelo Moise+ é construı́da em três nı́veis:
os comportamentos que um agente deve possuir quando ele
é responsável por um papel, que corresponde ao seu nı́vel
individual; as relações de comunicação, autoridade e de co-
nhecimento entre os papéis, que corresponde ao nı́vel social;
e a agregação dos papéis em grupos, que corresponde ao
nı́vel coletivo. A Especificação Funcional (FS, do inglês,
Functional Specification) declara como o SMA alcança as
metas globais, que são de caráter coletivo, decompondo-as
em planos e distribuindo-os aos agentes por meio de missões.
A Especificação Deôntica (DS, do inglês, Deontic Specifica-
tion) descreve as obrigações e permissões dos papéis para as
missões.

Para a implementação do SMA do FURGBol-Sim é uti-
lizada a organização apresentada na Figura 3. Adotou-se a
mesma organização de um jogador padrão do UvA Trilearn,
onde todos o jogadores do time assumento o papel deMeer.
Este papel possui duas atribuições: ficar bem posicionado, ou
seja, se for o mais perto da bola deverá persegui-la, caso
contrário ir para sua posição estratégica dentro do campo; e
caso esteja com a posse da bola, chutá-la em direção ao gol.

Figura 3. Organizão do FURGBol-Sim

V. RESULTADOS

Para comparar as estratégias descrita de forma explı́cita e
implicita, realizou-se 100 partidas das quais foram coletados
os placares. A tabela I contém o somatório dos placares e a
porcentagem de gols de cada equipe ao fim da simulação.

Placar Estratégia Explı́cita Implicita
Numérico 233 301

Porcentagem 43.6% 56.4%
Tabela I. RESULTADOS DA SIMULAÇÃO

A diferença de desempenho entre as equipes é atribuida
aos componentes aleatórios do Soccerserver. Este fator faz
com que as ações dos jogadores não sejam precisas. Portanto,
acredita-se que as duas equipes possuem o mesmo desempe-
nho.

VI. CONCLUSÕES

Este artigo descreveu a arquitetura e a implementação da
equipe FURGBol-Sim, projetada para o Soccer Server 2D. Esta
equipe integra aspectos do modelo de organização Moise+ de
SMA, uma arquitetura de agente cognitivo e o código fonte
base do UvA Trilearn. Esta abordagem possui o mérito de
restringir o espaço de busca de decisões do agente a um
tamanho que garanta a realização dos objetivos coletivos do
SMA, respeitando a autonomia dos agentes.

Nesta etapa do trabalho o objetivo é equipar o desempenho
da equipe base original, com uma organização social implı́cita
ao modelo, a uma equipe que integra os componentes de
alto nı́vel do agente cognitivo proposto em [2] junto com a
explicitação da organização social original utilizando o modelo
Moise+. Os resultados obtidos nos levam a acreditar que se
obteve êxito no objetivo.

O resultado mais evidente deste processo é a modularização
do processo de desenvolvimento em torno de conceitos sociais
como meta globais, missões, papéis, etc. Deste modo, permite-
se um desenvolvimento incremental da equipe de modo a
atender um número cada vez maior de situações coletivas no
ambiente. Não obstante, os próximos passos prevêem a ex-
tensão do número de situações atendidas pela equipe elevando
a sua performance coletiva.

REFERÊNCIAS

[1] V. Dignum and F. Dignum, “Modelling agent societies: Co-ordination
frameworks and institutions,” in Proceedings of the 10th Portuguese
Conference on Artificial Intelligence (EPIA’01). Berlin: Springer, 2001,
pp. 191–204, lNAI 2258.

[2] A. L. da Costa and G. Bittencourt, “From a concurrent architecture
to a concurrent autonomous agents architecture,” in International Joint
Conference on Artificial Intelligence (IJCAI’99), 1999.

[3] M. Chen, E. Foroughi, F. Heintz, Z. X. Huang, S. Kapetanakis, K. Kos-
tiadis, I. N. Johan Kummeneje, O. Obst, P. Riley, Y. W. Timo Steffens,
and X. Yin, RoboCup Soccer Server: for Soccer Server Version 7.07 and
later, May 2001, www.robocup.org.

[4] J. R. Kok, N. Vlassis, and F. Groen, “Uva trilearn 2003 team description,”
in Proceedings CD RoboCup 2003, D. Polani, B. Browning, A. Bonarini,
and K. Yoshida, Eds., Padua, Italy, July 2003.

[5] J. F. Hübner and J. S. ao Sichman, “Aplicação de organização de sistemas
multiagentes em futebol de robôs,” in XI Escola de Informática do SBC,
vol. 1. Lages-SC: Angelo Augusto Frozza, 2003, pp. 119–147.

Integrating the Organizational Model Moise+ to a Cognitive Agent Architecture applied to Robocup

Simulator 2D

115

Behavior Editor for Agents Based on Service
Oriented Architecture

Saulo Popov Zambiasi
Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina

Florianópolis, SC – Brasil
saulopz@gmail.com

Ricardo J. Rabelo
Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina

Florianópolis, SC – Brasil
rabelo@das.ufsc.br

Abstract—Many efforts have been made to create agents more
autonomous, flexible and dynamic. Concomitantly with the fact
that agents are inserted in environments distributed,
interconnected and with a lot of dynamics information, it agents
need to communicates with others and other systems by the
inter-operable way. The use of a standard, such as Service
Oriented Architecture and web services, can provide an
inter-operable way to agents communication and to executes
some distributed operations. Thus, this paper presents a proposal
of a behavior editor for agents based on Service Oriented
Architecture. A prototype of a behavior editor and an executor of
agents was implemented and it is also presented.

Keywords—agents; behavior; service-oriented architecture.

I. INTRODUÇÃO

O cenário da computação distribuída tem aumentado
significativamente a complexidade dos ambientes
computacionais. Consequentemente, as pessoas veem-se
inseridas em um ambiente pessoal cada vez mais distribuído e
com uma grande quantidade de informações altamente
dinâmicas. Dentro desse contexto, os agentes, como forma de
auxiliar seus usuários, precisam interagir com este ambiente e
manter a compatibilidade com os mais diversos tipos de
conteúdos espalhados neste meio [2]. Para isso, técnicas para a
criação de agentes e algoritmos para compor a forma como os
agentes agem têm sido estudadas e aperfeiçoadas.

Uma maneira para resolver problemas de interoperabilidade
nesse cenário distribuído é a utilização de estruturas e
protocolos padronizados. A utilização de serviços distribuídos
pelos agentes, via Arquitetura Orientada a Serviços (Software
Oriented Architecture – SOA), traz consigo as vantagens dessa
tecnologia. Nessa, as funções dos agentes se apresentam como
serviços independentes, cada qual com interfaces de invocação
bem definidas e que podem ser utilizadas sequencialmente ou
paralelamente para compor processos de negócios [8].

Enquanto SOA é vista como uma forma bastante eficiente
de executar programas remotamente via Internet, utilizando
protocolos amplamente utilizados na atualidade, os agentes são
uma tecnologia já firmada na computação como uma maneira
para resolver problemas complexos [4]. Com a utilização de
SOA em agentes, é possível que um agente possa se utilizar de
chamadas à serviços web para efetuar algumas operações, ou
mesmo processos de negócios. Porém, o usuário precisa poder
personalizar as ações do seu agente, adicionar chamadas à
serviços web, formas de interação, etc. de modo a este agente

possa se adaptar às suas necessidades [9] e sem que o mesmo
precise ser recompilado. Nesse contexto, esse artigo apresenta
uma proposta de edição e execução de comportamentos de
agentes integrados com SOA. Também é apresentado um
protótipo implementado para os testes da proposta.

II. BREVE REVISÃO DA LITERATURA

Um agente computacional é visto como uma entidade que:
(i) tem uma identidade persistente para realizar transações,
manipular exceções, construir uma história de interações e
definir a confiança para com outros agentes; (ii) percebe e
responde ativamente às suas atividades no seu ambiente; (iii) se
comunica com outros agentes ou pessoas [13]. Os agentes
devem refletir a mesma dinâmica que um usuário apresenta na
vida real, ou seja, assim como os interesses do usuário mudam
com o tempo, os agentes também devem ajustar seus objetivos
para corresponder com seus usuários [12].

Uma importante questão dos agentes está em construí-los
de forma que possam ser facilmente personalizados para cada
usuário. Muitos programas proveem simples parâmetros que
permitem aos usuários personalizarem seus comportamentos
explicitamente. Porém, em geral, essa interação é bastante
limitada. Uma maneira sofisticada de se resolver esta limitação
é por meio da dinamicidade e da escalabilidade. Com isso,
muitos usuários podem ter disponível a possibilidade de
programar suas preferências de forma explícita. Ainda assim,
algumas tarefas, como personalizar um filtro de e-mails para
selecionar mensagens urgentes, por exemplo, necessitam que a
pessoa tenha certa noção detalhada e possa articular conceitos
bastante sutis. Uma forma bastante interessante para resolução
desse problema é deixar que especialistas desenvolvam os
filtros e ao usuário fica apenas o papel de utilizá-lo e
configurá-lo conforme suas necessidades. Entretanto, o
problema de se lidar com a flexibilidade da forma como o
agente se comporta vai além de simplesmente alterar a
configuração de um agente para cada usuário [9].

Observa-se também a necessidade da utilização de padrões
para comunicação entre agentes e outros softwares [2]. A
melhor forma de se resolver esse problema é adotar algum tipo
de tecnologia já difundida, tal como SOA, por exemplo.

SOA "é um paradigma para organização e utilização de
competências distribuídas que estão sob o controle de
diferentes domínios proprietários" [3]. As pessoas e
organizações criam competências para resolver problemas
específicos conforme suas necessidades, modeladas por um

Behavior Editor for Agents Based on Service Oriented Architecture

117

conjunto de serviços de softwares [1]. Esses serviços possuem
interfaces que podem ser publicadas e descobertas por
consumidores de serviços e podem ser agrupados para a
criação de diferentes aplicações e processos de negócios,
utilizando-se de um modelo de comunicação baseado na troca
de mensagens com baixo acoplamento [6], [10].

Os serviços web, por sua vez, são softwares que buscam a
interoperabilidade através da interação entre um computador e
uma rede. Estes serviços se comunicam entre eles e entre
sistemas via mensagens baseadas no protocolo HTTP
(Hipertext Trasnfer Protocol) [5].

Uma das vantagens de se trabalhar com serviços web em
SOA está na estrutura flexível que permite a criação de novos
serviços com a composição de outros serviços. Além disso,
eles seguem os requisitos de SOA: (i) Baixo acoplamento, os
serviços da arquitetura não devem ter uma dependência forte
entre si; (ii) Independência de implementação, não se deve
depender de características específicas de linguagens de
programação ou ambientes de execução; (iii) Configuração
flexível, os diferentes serviços devem poder ser ligados entre si
de forma dinâmica e configurável; (iv) Tempo de vida longo,
os serviços devem existir por tempo suficiente para que sejam
descobertos e utilizados até se obter confiança em seu
comportamento; (v) Granularidade, as funcionalidades de um
sistema devem ser divididas em vários serviços; e (vi)
Distribuição, os serviços devem ficar distribuídos, para
aproveitar melhor os recursos computacionais [13].

Considerando que um serviço pode ser uma interface de um
agente, podendo ser solicitado por um software ou agente,
resultando na troca de mensagens, executando as atividades e
interagindo via protocolo de troca de mensagens definida na
descrição do serviço, pode-se então visualizar agentes em um
conceito de SOA. Assim, são definidas entidades que atuam
para a execução de determinada atividade ou para atingir
algum objetivo. Por mais que se tratem de metodologias
específicas, ambas trabalham com a noção de atividade,
objetivo, tarefa e interação orientada a mensagens [11].

Para que os agentes possam trabalhar com SOA, deve haver
três características: (i) um agente deve poder descobrir serviços
e se adaptar a eles; (ii) devem existir serviços web com a
descrição do protocolo para que um agente possa invocá-lo e;
(iii) um agente deve ser capaz de realizar interações complexas
com vários serviços ao mesmo tempo [7].

Assim, desenvolvedores podem encontrar e utilizar agentes
pela invocação de serviços web. Tal integração traz benefícios
imediatos em que torna um serviço web capaz de invocar um
agente de serviço e vice-versa, permitindo assim, através dos
conceitos e tecnologias de agentes, novas e avançadas
funcionalidades na utilização de SOA [4].

III. GERENCIADOR DE COMPORTAMENTOS

Basicamente, a forma como as informações estão
estruturadas/relacionadas são a base para a execução do
algoritmo do agente. Dessa forma, tal estrutura é a primeira
parte apresentada na proposta. A forma como o agente é
executado está diretamente ligada com essa estrutura,
permitindo que o usuário possa personalizar a ordem e forma
da execução das operações em tempo de execução. Por fim, é
mostrado brevemente o editor que permite que essa estrutura

possa ser configurada para então ser executada pelo software
servidor.

A. Estrutura das Informações

A Estrutura das Informações, visualizadas em um modelo
entidade-relacionamento (ER) na Fig. 1., é utilizada para
organizar as informações e a execução dos comportamentos.

A entidade Service é armazena os serviços web que podem
compor os comportamentos do agente. Por meio desta, o
sistema busca o WSDL do serviço web e apresenta para o
usuário suas operações.

Fig. 1. Diagrama Entidade-Relacionamento do Sistema de Gerenciamento de
comportamento dos agentes.

No protótipo, um agente possui uma estrutura de
informações na forma de árvore, armazenadas na entidade
Information. Uma informação pode ter várias informações
filhas e cada filha pode ter outras diversas filhas. Para manter
essa relação, em um atributo chamado father é definida a
informação pai. Para a informação raiz, father é null. As
informações podem ser de diferentes tipos, definidos no
atributo type. Os tipos podem ser básicos como string, integer,
float, boolean, text, ou um tipo complexo chamado struct. Se o
tipo for struct, então a informação é caracterizada como pai,
podendo conter n informações filhas. Para que uma informação
possa ser visualizada e utilizada por outros comportamentos do
agente, atribui-se true para o atributo global da informação.
Caso contrário esta só pode ser visualizada no comportamento
da qual a informação pertence, identificado em idbehavior.

Um agente pode possuir diversos comportamentos
executando concorrentemente. Para que um comportamento
entre em execução, deve ser atribuído true ao atributo active
em Behavior. A estrutura de execução dos comportamentos
proposta neste trabalho segue um formato de algoritmo. Cada
linha de execução é uma atividade e está colocada em sua
devida ordem. O atributo execpos se referencia à atividade em
que a execução do comportamento se encontra. Se o usuário
requisitar a interrupção de um comportamento, a posição de
execução é salva para que o este possa voltar a se executar a
partir da posição que parou.

As linhas de execução dos comportamentos são chamadas
de atividades (Activity). São elas:

Zambiasi and Rabelo

118

• assign call: invoca um serviço web. Em service há um
link para o serviço e em operation a operação. O output
é ligado à uma Information e recebe o retorno da
invocação do serviço. Os atributos inputs (Information)
são os parâmetros passados à operação do serviço;

• assign call var: funciona como uma assign call, mas
utiliza o link para o serviço web e a operação na forma
de variáveis (Information);

• assign static: uma variável recebe um valor passado de
forma estática e armazenado no atributo static da
entidade Activity;

• assign var: uma variável (infoa) recebe o valor de
outra variável (infob);

• conditional static: se uma condição (se-então) é
satisfeita, o bloco interno é executado. Os atributos
utilizados para efetuar a validação são infoa, operator
(==, !=, <, >, <=, >=, contem) e static (valor estático);

• conditional var: funciona tal como a atividade anterior,
mas a segunda informação também é uma variável;

• conditional end: aponta (goto) para o local onde o
bloco condicional inicia. As atividades conditional
static e conditional var precisam possuir uma ligação
(goto) ao seu conditional end.

• loop static: funciona como o conditional static, mas o
bloco continua sendo executado enquanto a condição é
satisfeita.

• loop var: funciona como o conditional var, mas
continua executando enquanto a condição é satisfeita.

• loop end: Indica fim de bloco de um laço e deve ser
ligado (goto) com seu início de bloco de laço também.

Essas informações são utilizadas pelo servidor para
executar os comportamentos dos agentes, O usuário pode criar,
alterar e excluir comportamentos por meio de uma interface
web de configuração.

B. Software Servidor

O protótipo baseado na proposta desse artigo foi
desenvolvido para suportar múltiplos usuários, cada qual com
seu próprio agente. O servidor se mantém em um laço de
execução, avaliando a cada período de tempo se o agente está
ativo. Se um agente estava em execução e seu atributo active é
alterado para false, significa que o agente foi desligado. O
servidor envia uma mensagem para o agente avisando que o
mesmo foi desligado. O agente salva suas informações e
termina sua execução.

Cada agente é uma thread que possui uma lista de
comportamentos e sua execução se dá na forma de um laço que
efetua o gerenciamento desses comportamentos.

A utilização de threads se dá pois essas possuem suporte há
múltiplas linhas de controle dentro de um processos. Elas
ocupam o mesmo espaço de endereçamento, mas cada uma
possui seu próprio ponteiro de controle de execução [14]. Um
programa não precisa ficar esperando o retorno para continuar
trabalhando em outras tarefas. Ou seja, podem haver vários

agentes sendo executados simultaneamente no servidor. Os
comportamentos (Behavior) dos agentes são compostos de
várias linhas de execução (tal como um algoritmo) e precisam
ser executados em paralelo. Nesse caso, também foram
implementados como threads.

Os comportamentos se mantém em execução, executando
cada uma de suas atividades. Há um ponteiro de execução
(execpos) que indica qual atividade está em execução. Quando
esta é executada, o ponteiro pula para a próxima atividade. O
que define qual atividade é executada na sequência depende do
retorno da execução da atividade corrente. Por exemplo, se
uma atividade simples de atribuição estática assign static é
chamada, ela retorna a posição dela acrescida de um, ou seja, a
atividade seguinte. Se for um tipo condicional, a posição
retornada é, ou a primeira atividade interna do bloco (se válida
a condição), ou a próxima posição após seu final de bloco (se
inválida). No caso do laço, retorna ou a primeira posição do
bloco, ou a próxima posição do final de bloco e no final do
bloco do laço, a posição é direcionada para o início do bloco.

Quando execpos possui um valor maior do que a
quantidade de atividades que o comportamento possui, então o
valor de execpos retorna para 1, e a execução do algoritmo
recomeça.

C. Interface Web de Configuração

A interface web de gerenciamento do agente serve para
criar um agente, adicionar informações, serviços e
comportamentos. Cada comportamento pode ser ativar ou
desativar.

Nessa interface o usuário pode cadastrar um novo serviço
web para ser utilizado nos comportamentos do agente, alterar
os existentes, ou visualizá-los. O usuário pode visualizar
detalhes desses serviços, com suas operações e um link para o
documento WSDL do serviço web.

A edição dos comportamentos (Fig. 2.) possui (à esquerda)
informações específicas do comportamento (nome e descrição).
Também há dois botões, o botão de ligar/desligar
comportamento e o botão de recarregar informações na página.

Ao clicar no link “Detalhes”, aparece a lista de informações
do comportamento e a lista das informações globais. O usuário
pode acrescentar novas informações, editar ou excluir.
Observa-se que informações que estão sendo referenciadas por
alguma atividade não podem ser excluídas. Localizado na parte
direita da Fig. 2. está o comportamento na forma de algoritmo.

Fig. 2. Editor de Comportamentos do agente.

Para adicionar uma nova atividade em um comportamento,
o usuário deve clicar no ícone “+” nas linhas de atividades. O

Behavior Editor for Agents Based on Service Oriented Architecture

119

ícone “-” serve para excluir uma atividade. Caso uma atividade
seja um bloco, apenas o início do bloco e o final são excluídos,
restando os elementos internos.

As setas servem para alterar a ordem de uma atividade. Ao
clicar a seta para cima, uma atividade é trocada pela atividade
anterior, se clicado na seta para baixo, a atividade é trocada
pela posterior. Quando um início ou fim de bloco é movido,
todo o bloco segue junto. Se ao mover um bloco para cima, for
encontrado o final de outro bloco, então o bloco que foi
movido é inserido dentro do bloco superior.

Quando o usuário passa com o mouse por cima de
informações e outros itens da atividade, outras informações são
apresentadas, como o valor de uma informação, o link de um
serviço web, etc.

A atividade que se encontra em execução, no momento em
que a página é carregada, é apresentada com uma cor azul
claro. Para que o usuário possa visualizar o andamento da
execução, é necessário clicar no botão recarregar, na parte
esquerda da página. Neste protótipo, as informações não são
carregadas automaticamente.

O ícone de edição, entre o “-” e a seta para cima, serve para
editar um comportamento existente. Para cada tipo de atividade
diferente, um formulário diferente é apresentado. No caso, é a
edição de uma atividade de chamada de serviço web (Linha 2).

Um campo do formulário é reservado para a informação
que deve receber o retorno da invocação do método, o segundo
campo é o link do serviço e o terceiro a operação. Ao colocar
ou alterar essas informações, deve ser selecionado o botão “ok”
para salvar os dados, antes mesmo de selecionar os parâmetros.
Em “Parâmetros:” há uma lista de parâmetros que já foram
inseridos, na ordem que deve estar na operação do serviço web.
Também à um botão de excluir, para retirar um parâmetro já
inserido. Para adicionar um novo parâmetro, basta selecionar
selecionar da lista de informações do comportamento e
informações globais e clicar no botão “adicionar”.

Quando uma atividade do tipo condicional ou laço é criada,
automaticamente, e logo na sequencia, uma atividade de
fechamento de bloco é criado (FIM SE ou FIM ENQUANTO).

IV. CONSIDERAÇÕES FINAIS

Este artigo apresentou uma proposta para edição do
comportamento de agentes que permite que o usuário possa
personalizar o agente para suas necessidades, em tempo de
execução e sem que precise uma recompilação do agente.

Ainda, a proposta permite que o usuário possa configurar
seu agente para efetuar chamadas a serviços web. Isso permite
ao agente executar operações remotas, distribuindo e
paralelizando o processamento e dando maior poder
computacional. Essas operações também podem ser
implementadas e fornecidas por terceiros. Além disso, por
meio das chamadas a serviços web, o agente pode efetuar
processos de negócios para os usuários dos agentes. Em tempo,
a estrutura de algoritmos da proposta permite que possa ser
efetuada uma orquestração de serviços web no agente.

Para avaliar a proposta em funcionamento, um protótipo foi
desenvolvido. Este foi dividido em duas partes: (i) um editor de
comportamentos que pode se utilizar de chamadas de serviços
web para compor as atividades dos algoritmos dos

comportamentos dos agentes, tal como chamadas de funções
em linhas de execução em linguagem de programação e; (ii)
um software servidor que mantem os agentes em execução,
rodando paralelamente cada agente e cada comportamento
desses agentes.

Os próximos passos podem seguir em diversos vieses. Não
obstante, este artigo limita-se aqui a uma sugestão inicial, tal
como a criação de uma interface de configuração dos
comportamentos de forma gráfica, ou seja, a utilização de
elementos de fluxogramas para compor os comportamentos ao
invés de uma estrutura na forma de algoritmos. Tal recurso visa
a facilitar a utilização do editor por usuários que não entendem
de programação, mas que conseguem entender a lógica de um
fluxograma de execução.

REFERÊNCIAS

[1] Booth, D.; Haas, H.; McCabe, F. (2004). Newcomer, E.; et al. “Web
Services Architecture”. Disponível em:
<http://www.w3.org/TR/ws-arch/> Acessado em Março/2013.

[2] Bush, J.; Irvine, J.; Dunlop, J. (2006). “Personal Assistant Agent and
Content Manager for Ubiquitous Services”. Wireless Communication
Systems, 2006. ISWCS'06. 3rd International Symposium on.
pg.169-173.

[3] Estefan, J. A.; Laskey, K.; McCabe, F.; Thorthon, D. (2008). “Reference
Architecture for Services Oriented Architecture Version 1.0”. OASIS.
Disponível em:
<http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf>.
Acessado em: Março/2013.

[4] Greenwood, D.; Calisti, M.; at al. (2004). “Engineering Web Service -
Agent Integration”. IEEE International Conference on Systems, Man
and Cybernetics. v2.

[5] Haas, H e Brown, A. (2004). “Web Services Glossary”. Disponível em:
<http://www.w3.org/TR/ws-gloss/>, Acessado em Março/2013.

[6] Huang, Y. e Chung, J.Y. (2003). “A web services-based framework for
business integration solutions”. Electronic Commerce Research and
Applications, 2(1):15–26. Disponível em:
<http://www.sciencedirect.com/science/article/B6X4K-48642HS-1/2/a7
51ffc1be1676f5b9955ea9050c160d>, acessado em Fevereiro/2013.

[7] Kuno, H. and Sahai, A.. (2002). “My agent wants to talk to your service:
personalizing web services through agents”. Proceedings of the First
International Workshop on Challenges in Open Agent Systems. Pg
25-31.

[8] MacKenzie, C.; Laskey, K.; McCabe, F. at all. (2006). “Reference
Model for Service Oriented Architecture 1.0”. OASIS Standard.
Disponível em: <http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf>.
Acessado em Fev/2013.

[9] Michaell, T., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.
(1994). “Experience with a learning personal assistant”.
Communications of the ACM, July.

[10] O'Brien, L.; Bass, L.; Merson, P. (2005). “Quality attributes and
service-oriented architectures”. Technical Note - Software Engineering
Institute, Carnegie Mellon University.

[11] Ricci, A.; Buda, C.; Zaghini, N.. (2007). “An agent-oriented
programming model for SOA & web services”. Industrial Informatics,
5th IEEE International Conference on. v2.

[12] Sensoy, M. and Yolum, P.. (2008). “Evolving service semantics
cooperatively: a consumer-driven approach”. Springer Science+Business
Media, LLC, Nov 9.

[13] Singh, M.P. and Huhns, M.N.. (2005). “Service-oriented computing:
semantics, processes, agents”. John Wiley & Sons, New York, NY,
EUA.

[14] Tanenbaum, A.S.. (2010). “Sistemas Operacionais Modernos”. Prentice
Hall - Br. 3ed.

[15] Weiss, G.. (1999). “Multiagent systems: a modern approach to
distributed artificial intelligence”. MIT Press.

Zambiasi and Rabelo

120

Model Oriented Approach to Code Generation for

Normative Multi-Agent Systems

Robert M. R. Júnior, Emmanuel S. S. Freire e Mariela I. Cortés

Grupo de Engenharia e Sistemas Inteligentes (GESSI)

Departamento de Computação – Universidade Estadual do Ceará (UECE)

Fortaleza, Brasil

{robstermarinho, savio.essf}@gmail.com, mariela@larces.uece.br

Abstract—The increasing complexity of the normative multi-

agent systems (MAS) development represents a challenge to software

engineering. Model driven approach promotes a fast and consistent

software development through the use of software models. In order

to reduce the semantic gap that exists between modeling and

implementation levels and surround the natural complexity

associated to Normative MAS development, this work proposes the

use of a model driven approach to develop Normative MAS. A

template-based approach was used to automate the code generation

process from NorMAS-ML models to the specific platform (JADE),

it was named JAMDER 2.0 that contains all resources of JADE and

adds new entities to adapt the concepts of each other.

Keywords— Multi-Agent Systems; Norms; Model Driven

Architecture; NorMAS-ML; JAMDER

I. INTRODUÇÃO

Sistemas Multi-Agente (SMA) normativos envolvem uma
grande variedade de entidades, com isso, aumenta-se bastante a
complexidade no processo de desenvolvimento [6]. O principal
fator é a diferença semântica entre a fase de detalhamento do
projeto ao longo de um conjunto de modelos, e a fase de
implementação, que tem por objetivo a codificação do sistema.
Nesse contexto, são necessárias linguagens de modelagem e
programação que ajudem os desenvolvedores na construção de
SMAs normativos e ferramentas que permitam a transição
sistemática entre a modelagem e fases de implementação. Este
artigo apresenta uma abordagem baseada na arquitetura
orientada a modelos (MDA), a qual utiliza transformações e
técnicas de geração de código a partir de artefatos de
modelagem gerados pela linguagem de modelagem NorMAS-
ML [6]. Diagramas da linguagem são gerados através do
ambiente de modelagem MAS-ML Tool [7]. Como plataforma
de implementação dessas entidades, destacamos o framework
JAMDER 2.0 [10], definida como uma extensão do framework
JAMDER (JADE to MAS- ML 2.0 Development Resource)
[8]. Este trabalho está organizado da seguinte maneira: a Seção
2 apresenta os trabalhos relacionados. A Seção 3 apresenta a
abordagem MDA. A Seção 4 aborda o framework JAMDER
2.0 e os templates Acceleo para JAMDER 2.0. A seção 5
apresenta um estudo de caso e a seção 6 apresenta as
conclusões e trabalhos futuros.

II. TRABALHOS RELACIONADOS

Nesta seção, analisamos os principais trabalhos que
abordam a geração de código para SMA normativos.

De Maria [4] propõe a geração de código baseado na
arquitetura MDA para SMA utilizando a linguagem de
modelagem MAS-ML e o framework de implementação ASF
que contempla as entidades tipicamente encontradas em SMAs.
Entretanto, possui suporte limitado aos conceitos normativos,
pois a ferramenta é baseada em MAS-ML [11].

TAOM4E [13] é um ambiente de modelagem orientado a
agente e suporta o desenvolvimento orientado a modelos. A
ferramenta é um plug-in para a plataforma Eclipse, no entanto
permite a geração de código apenas para agentes BDI (belief-
desire-intention).

SMA modeler [12] é um metamodelo que possui
independência com diferentes abordagens de desenvolvimento
e plataformas de implementação e possibilita criar modelos de
SMA. Porém este metamodelo não contempla todas as
entidades de um SMA normativo e não possui uma ferramenta
de modelagem.

Considerando a necessidade de uma abordagem de geração
de código, a abordagem de De Maria [4] foi escolhida porque
(i) sua geração de código é baseada na arquitetura MDA para
SMA e (ii) utiliza a linguagem de modelagem MAS-ML que
serviu como base para a definição da linguagem NorMAS-ML.

III. DESENVOLVIMENTO ORIENTADO A MODELOS

No desenvolvimento orientado a modelos (MDD), os
diagramas da fase de modelagem possuem uma grande
importância, pois qualquer modificação nos modelos
conceituais reflete automaticamente no código gerado
facilitando a manutenção e evolução dos sistemas além de
trazer um foco maior na modelagem ao invés do código [5].

A arquitetura dirigida por modelos ou Model Driven
Architecture (MDA) é uma iniciativa da OMG [9] com o
intuito de formalizar os conceitos de MDD em um padrão para
ser adotado pela comunidade e indústria de desenvolvimento
de software. Com isso, a OMG propôs um processo de
transformação, projetado para ser aplicado a diferentes
linguagens de modelagem.

O código gerado a partir da transformação do modelo da
aplicação é estabelecido pelo conceito ISM (Implementation
Specific Model) dentro desta arquitetura. Neste contexto,
podemos destacar o plug-in Acceleo [1] que permite a geração
automática de código a partir de um metamodelo definido pelo

Model Oriented Approach to Code Generation for Normative Multi-Agent Systems

121

usuário que esteja de acordo com o EMF (Eclipse Modeling
Framework). Como vantagens, o plug-in possui integração
direta com o Eclipse e tem a possibilidade de extensão.

IV. ABORDAGEM BASEADA EM MODELOS PARA SISTEMAS

MULTI-AGENTE NORMATIVOS

No contexto da abordagem MDA, um suporte
automatizado para a geração de código a partir de modelos de
NorMAS-ML é proposto. A ferramenta MAS-ML Tool [7],
desenvolvido como plugin para o Eclipse, permite a
modelagem do diagrama de normas com base no metamodelo
de NorMAS-ML. Esta ferramenta gera o arquivo masml.
(formato XMI) que armazena a estrutura de dados das
entidades e os aspectos estruturais e comportamentais definidos
em NorMAS-ML. Estes arquivos representam a entrada para o
processo de transformação a partir dos modelos de código.

Como o objetivo de fornecer a infraestrutura adequada
voltada para a implementação de entidades de um SMA
normativo de acordo com a linguagem NorMAS-ML, o
framework JAMDER 2.0 é proposto.

A. Jamder 2.0

JAMDER 2.0 [10] é uma extensão do framework JAMDER
[8] que incorpora os recursos oferecidos em nível de
modelagem por NorMAS-ML, dentre eles, especificamente, as
normas e suas propriedades. A extensão foi realizada por meio
da inclusão de um conjunto de classes para representar os
conceitos normativos. Essas classes são descritas a seguir: (i)
para representar a entidade norma foi criada a classe
jamder.norms.Norm que define as seguintes propriedades: o
identificador, o tipo da norma, a entidade restringida, o
contexto, a ação e a lista de restrições de ativação; (ii) a classe
jamder.norms.NormResource representa qualquer tipo de
recurso que será restringido; (iii) as ações vinculadas às normas
foram representadas pela classe principal
jamder.norms.NormAction e suas duas subclasses que definem
operações do sistema: AtomicAction e CompositeAction; (iv) a
classe jamder.norms.NormConstraint foi criada para a
representação das restrições de ativação de uma norma, com suas
respectivas subclasses que contemplam cada tipo de restrição:
jamder.norms.Before, jamder.norms.After, jamder.norms.Between
e jamder.norms.IfConditional. Ela está diretamente ligada à classe
jamder.norms.Date responsável por definir uma data.

Outras classes existentes em JAMDER sofreram
modificações para contemplar as propriedades definidas em
NorMAS-ML. Essas modificações juntamente com as novas
classes formam o framework JAMDER 2.0 que possibilita a
modelagem das propriedades e relacionamentos das entidades
que compõem um sistema multi-agente normativo. O código
completo de JAMDER 2.0 encontra-se em: https://sites.google.
com/site/uecegessi/estudo-de-caso/jamder-2-0

B. Geração de código

Para definir o processo de transformação para a geração de
código utilizamos o plugin Acceleo [1]. O plugin permite
desenvolvimento incremental em que o código pode ser
gerado, modificado e reutilizado. Para formalizar a geração de
código em Acceleo, é necessário estabelecer um template para

cada entidade através da linguagem MTL (Model
Transformation Language) [9]. Quando o template é executado
no Eclipse é necessário especificar o modelo NorMAS-ML
(arquivos .masml no formato XMI) e a pasta de saída para as
classes (classes geradas em JAMDER 2.0). Dessa forma, a
estrutura de cada entidade no diagrama de modelagem é
verificada pelo template.

Uma norma é uma instância de uma classe que herda a
classe Norm definida em JAMDER 2.0 e seu template possui
uma regra de definição do construtor que contempla os vários
casos de modelagem envolvendo a entidade definida como
contexto e a entidade restringida segundo a especificação feita
na modelagem. A Figura 1 apresenta parte da estrutura do
template para a entidade Norm.

Fig. 1. Parte do template da classe Norm.

O template para gerar a entidade ambiente é responsável por
criar uma instância de uma classe que herda a classe ambiente
de JAMDER 2.0 e analisa, segundo a modelagem, todos os
relacionamentos que o ambiente possui, a fim de instanciar em
seu construtor as entidades relacionadas na seguinte ordem:
organizações, agentes, papéis de agente e por fim, as normas e
suas propriedades. Outro template de JAMDER modificado foi
o da entidade agente. JAMDER considera cinco tipos de
agentes de acordo com suas arquiteturas internas. Sabendo que
todos os agentes têm como propriedades comuns estar em um
ambiente e executar pelo menos um papel nas organizações de
que fazem parte, a classe jamder.agents.GenericAgent é a
classe que representa as propriedades e demais atributos
comuns entre as três ramificações da hierarquia de agentes
especificada em JAMDER 2.0. Dessa forma o template
especifica os dois casos de herança: (i) quando o agente herda
de outro agente; (ii) quando o agente não herda de outro
agente, então nesse caso, ele herdará de GenericAgent.

V. ESTUDO DE CASO

Com o objetivo de ilustrar a geração de código, este estudo
de caso aborda a criação de um SMA normativo responsável pela

[comment encoding = UTF-8 /]

[module Norm('masml')]

[template public generateElement(c : NormClass)]

[comment @main/]

[file (c.name + '.java', false, 'UTF-8')]

import java.util.Hashtable;

import jamder.Organization;

import jamder.norms.*;

import jamder.roles.AgentRole;

public class [c.name/] extends Norm{

[if ((c.normContext.organizationClass->size() >

0) and

 (c.normRestrict.agentRoleClass->size() >

0))]

 public [c.name/] (String name, NormType

normType, AgentRole restrictAgentRoleClass,

Organization contextOrganizationClass, NormAction

 action, Hashtable<String, NormConstraint>

normConstraint){

 super(name, normType,

restrictAgentRoleClass, contextOrganizationClass,

 action, normConstraint);

}

 [else][if ((c.normContext.organizationClass-

>size() > 0) and (c.normRestrict.organizationClass-

>size() > 0))]

//...

Rocha Júnior, Freire and Cortés

122

gestão de submissões de artigos. Esses sistemas são utilizados
para a seleção dos artigos que serão publicados em um evento
científico. Para isso, os autores devem submeter seus artigos
até uma data determinada, a partir da qual, os avaliadores
iniciam o processo de revisão. Após o término do período de
revisão, os organizadores devem divulgar os resultados.

No ambiente Conference Management, é possível
identificar a organização principal Conference e o tipo de
agente: user agent, que pode exercer os papéis author, speaker,
organizer, conference chair, website manager e reviewer.
Estes papéis são definidos pela organização principal,
juntamente com o papel de objeto submitted. As instâncias
desse papel são exercidas pelas instâncias da classe Paper, que
possui duas subclasses ShortPaper e FullPaper. Para o sistema
de gestão de submissão de artigos foram definidas as seguintes
normas: (i) N1: Os revisores estão proibidos de revisar seus
próprios artigos; (ii) N2 (Punição para a violação da N1): Os
revisores que violarem N1 devem ter seu papel cancelado.

A. Geração de código
1

Cada entidade do sistema juntamente com as normas foram
modeladas utilizando o diagrama de normas da MAS-ML
Tool. A partir dessa modelagem segue a geração de código:

1) Normas: possuem uma estrutura simples de classe que

contém apenas a chamada ao construtor. Os parâmetros do

construtor serão todos instanciados dentro da classe Ambiente.

A Figura 2 exibe o código gerado para as normas N1 e N2.

Fig. 2. Código gerado para as normas N1 e N2.

2) Ambiente: É necessário identificar todas as

propriedades que compõe cada uma das normas. Essas

propriedades serão instanciadas dentro da classe do ambiente

antes mesmo de instanciar a entidade Norma.

VI. CONCLUSÃO E TRABALHOS FUTUROS

Neste trabalho, descrevemos uma abordagem dirigida a
modelos para desenvolver SMAs Normativos através de
geração automática de código a partir de modelos, com base
em artefatos gerados pela MAS-ML Tool. O processo de

geração automática de código é realizado usando templates
Acceleo que são responsáveis por criar classes em JAMDER
2.0. Uma das vantagens da geração de código é encapsular o
processo de transição da fase de concepção para a fase de
aplicação, aumentando a produtividade e reduzindo a
ocorrência de erros nas atividades de prototipagem. A
combinação destas três ferramentas (JAMDER 2.0, NorMAS-
ML e Acceleo) fornece um desenvolvimento mais fácil para
SMAs normativos, aproveitando o uso da plataforma Eclipse.

Como trabalho futuro pode ser abordada a evolução da
linguagem NorMAS-ML e do framework JAMDER 2.0 para
suportar a modelagem e a geração de código das entidades
considerando os elementos dinâmicos das normas.

REFERENCES

[1] ACCELEO, "Acceleo OpenSource"; disponível em:
http://www.acceleo.org/. Acessado em 15 de janeiro de 2013.

[2] Beydeda, S., Book M., E Gruhn, V. (2005) "Model-driven Software
Development." Birkhäuser,

[3] Blois, M., Lucena, C. (2004) "Multi-Agent Systems And The Semantic
Web – The SemanticCore Agent-Based Abstraction Layer." In: ICEIS -
International Conference on Enterprise Information Systems, 2004,
Porto. Proceedings of Sixth International Conference on Enterprise
Information Systems ICEIS 2004. Porto: INSTICC, 2004. p. 263-270.

[4] De Maria, B. A. (2004) "Usando a abordagem MDA no
desenvolvimento de sistemas multi-agentes. " Dissertação de Mestrado –
Pontífica Universidade Católica do Rio de Janeiro.

[5] France, R.; Rumpe, B; (2007) "Model-Driven Development of Complex
Software: A Research Roadmap" In: Future of Software Engineering
(FOSE’07) co-located with ICSE’07, Minnesota, EUA.

[6] Freire, E. S. S. ; Cortés, M. I. ; Goncalves, E. J. T. ; Lopes, Y. S. (2012)
"A Modeling Language for Normative Multi-Agent Systems". In: 13th
International Workshop on Agent-Oriented Software Engineering
(AOSE@AAMAS), 2012, Valencia (Spain). Proceedings of the 13th
International Workshop on Agent-Oriented Software Engineering.

[7] Freire, E. S. S. ; Rocha Jr., R. M. ; Cortés, M. I. (2012) "Um Ambiente
de Modelagem para Sistemas Multi-Agente Normativos". In: III
Workshop on Autonomous Sotware Systems (Autosoft), 2012, Natal.
Proceedings of III Workshop on Autonomous Sotware Systems.

[8] Lopes, Y. S. ; Goncalves, E. J. T. ; Cortés, M. I. ; Freire, E. S. S. (2012)
"A MDA Approach Using MAS-ML 2.0 and JAMDER". In: 13th
International Workshop on Agent-Oriented Software Engineering
(AOSE@AAMAS), 2012, Valencia (Spain). Proceedings of the 13th
International Workshop on Agent-Oriented Software Engineering.

[9] OMG. "Object Management Group." Disponível em:
http://www.omg.org. Acessado em 15 de janeiro de 2013.

[10] Rocha Jr., R. M. ; Freire, E. S. S. ; Cortés, M. I. (2013) "Estendendo o
Framework JAMDER para Suporte à Implementação de Sistemas Multi-
Agente Normativos ". In: IX Simpósio Brasileiro de Sistemas de
Informação (SBSI), 2013, João Pessoa. Anais do IX Simpósio Brasileiro
de Sistemas de Informação (SBSI), 2013.

[11] Silva, V. T.; Choren, R.; Lucena, C. J. P. (2007) "MAS-ML: A Multi-
Agent System Modeling Language." Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA); In:
Companion of the 18th annual ACM SIGPLAN Conference on Object-
oriented programming, systems, languages, and applications; Anaheim,
CA, USA, ACM Press, pp. 304-305.

[12] Santos, D. R. (2008) "Um Metamodelo para a Representação Interna de
Agentes de Software. Dissertação de Mestrado." Porto Alegre: PUC.

[13] TAOM4E; "Tool for Agent Oriented Modeling." Disponível em:
http://selab.fbk.eu/taom/

[14] Zambonelli, F.; Jennings, N. R.; Wooldridge, M. J. (2001)
"Organisational Rules as an Abstraction for the Analysis and Design of
Multi -Agent Systems." In: International Journal of Software
Engineering and Knowledge Engineering, Volume 11, Number 3, p.
303-328.

1O estudo de caso está sendo parcialmente apresentado devido à limitação
do número de páginas. Entretanto, a sua versão completa pode ser encontrada

em: https://sites.google.com/site/uecegessi/estudo-de-caso/jamder-2-0.

import java.util.Hashtable;

import jamder.Organization;

import jamder.norms.*;

import jamder.roles.AgentRole;

public class N1 extends Norm{

 public N1 (String name, NormType

normType, AgentRole restrictAgentRoleClass, Organization

contextOrganizationClass, NormAction action,

Hashtable<String, NormConstraint> normConstraint,

Hashtable<String, Norm> sactionPunishment){

 super(name, normType,

restrictAgentRoleClass, contextOrganizationClass, action,

normConstraint);

 }}

public class N2 extends Norm{

 public N2 (String name, NormType normType, AgentRole

restrictAgentRoleClass, Organization

contextOrganizationClass, NormAction action,Hashtable<String,

NormConstraint> normConstraint){

 super(name, normType,

restrictAgentRoleClass, contextOrganizationClass, action,

normConstraint);

 }}

Model Oriented Approach to Code Generation for Normative Multi-Agent Systems

123

Development of a communication mechanism

between Pedagogical Agents in a Virtual Learning

Environment
Desenvolvimento de um Mecanismo de Comunicação entre Agentes Pedagógicos em um Ambiente Virtual de Aprendizagem

A Geovane Griesang, Rejane Frozza, Rolf Fredi Molz,

Gilberto Dessbesell Jr

Programa de Pós Graduação em Sistemas e Processos

Industriais

Universidade de Santa Cruz do Sul (UNISC) – RS – Brasil

{geovanegriesang,frozza,rolf}@unisc.br,

gjunior@mx2.unisc.br

Rafael Peiter

Departamento de Informática

Universidade de Santa Cruz do Sul (UNISC) – RS – Brasil

rafapeiter@gmail.com

Abstract—The Intelligent Tutoring System (ITS) developed

by a research group linked to the Department of Informatics

UNISC (University of Santa Cruz do Sul) was no interaction

between the tutor and companion pedagogical agents. Thus, the

ITS was used as a basis in developing an interactive mechanism

to coordinate communication of agents. For this, a protocol of

interaction was modeled based on FIPA foundation. In addition,

a facilitator and a variation of the method of roulette been

developed to choose the agent that must interact with the student.

Interaction scenarios were applied to homologate the engine.

Keywords—teaching-learning process, intelligent tutoring

systems, virtual learning systems, communication mechanism

among pedagogical agents.

Resumo—O Sistema Tutor Inteligente (STI) desenvolvido por

um grupo de pesquisa vinculado ao Departamento de

Informática da UNISC (Universidade de Santa Cruz do Sul) não

tratava a interação entre os agentes pedagógicos tutor e

companheiro. Assim, esse STI foi usado como base no

desenvolvimento de um mecanismo de interação para coordenar

a comunicação dos agentes. Para isto, um protocolo de interação

foi modelado baseado na fundamentação FIPA. Além disso, um

agente facilitador e uma variação do método da roleta foram

desenvolvidos para eleger o agente que deve interagir com o

estudante. Cenários de interação foram aplicados para

homologar o mecanismo.

Palavras-chave— processo de ensino-aprendizagem, sistemas

tutores inteligentes, sistemas virtuais de aprendizagem, mecanismo

de comunicação entre agentes pedagógicos.

I. INTRODUÇÃO

A utilização de computadores em sala de aula tem
contribuído para maior motivação dos estudantes em seu
processo de aprendizagem, pois oferece mais diversidade na
maneira com que o estudante desenvolve o conhecimento. O
uso desses equipamentos na educação permite que novos
programas educacionais sejam inseridos nos ambientes de
ensino-aprendizagem, condizentes às expectativas dos

estudantes atuais [1]. De modo geral, os chamados Sistemas
Tutores Inteligentes (STI) podem ser definidos como sistemas
educacionais que usam de técnicas de Inteligência Artificial
(IA) para auxiliar os estudantes durante o seu processo de
aprendizagem [2].

Entretanto, os agentes são considerados pedagógicos
quando estão inseridos em sistemas que fazem uso do
paradigma de agentes desenvolvidos com a finalidade de
educar, possuindo como objetivo fundamental auxiliar os
estudantes em seu processo de ensino-aprendizagem [3].
Portanto, os Sistemas Multiagentes (SMA) são softwares
computacionais com vários agentes interagindo uns com os
outros, como em uma sociedade de agentes. Entretanto, cada
agente visa satisfazer suas próprias metas para que um objetivo
maior e em comum possa ser atingido [4].

Desta forma, o objetivo deste trabalho é desenvolver um
mecanismo de comunicação entre agentes pedagógicos de um
STI, com a finalidade de permitir a interação entre eles. Para
isto, o STI desenvolvido no Departamento de Informática da
UNISC (projeto de estudantes e professores) foi utilizado para
a validação da proposta. O mecanismo de comunicação
procurou atender as necessidades do STI em questão, uma vez
que esse sistema está em frequente estudo [5].

O artigo está organizado nas seguintes seções: a seção II
aborda o STI usado como base para o desenvolvimento do
mecanismo de comunicação; a seção III descreve alguns
trabalhos relacionados; a seção IV apresenta as características
do mecanismo desenvolvido; a seção V apresenta a conclusão.

II. STI BASE DESENVOLVIDO NA UNISC

Os agentes pedagógicos inseridos no software educacional
são os agentes tutor (Dóris) e companheiro (Dimi), onde o
agente tutor possui função parecida a de um professor, com
capacidade de identificar características relativas à
aprendizagem do estudante. Entretanto, o agente companheiro
possui a função de atuar no ambiente como parceiro do
estudante, ajudando-o nas tarefas propostas pelo STI.

Development of a communication mechanism between Pedagogical Agents in a Virtual Learning

Environment

125

Os agentes pedagógicos contidos no STI base possuem
como característica a interação com o estudante, assim como, a
comunicação com os demais módulos do Ambiente Virtual de
Aprendizagem (AVA). Cada agente pedagógico atua de forma
independe no sistema, não havendo interação entre eles. Essa
arquitetura possui uma base de conhecimento e os módulos:
perceptivo, cognitivo e reativo.

O módulo perceptivo se comunica com os demais, e com os
agentes pedagógicos e a base de conhecimento. Ele é o
responsável por extrair e armazenar dados referentes à
interação do estudante com o STI e monitorar as ações do
aluno. O módulo cognitivo executa as inferências sobre a base
de conhecimento, sendo possível determinar as ações que
devem ser realizadas pelo agente pedagógico, sempre com base
nas suas percepções. O módulo reativo deve estabelecer a
interface entre os agentes pedagógicos e o estudante, onde são
exibidas as mensagens para os estudantes, além de executar as
ações indicadas pelo módulo cognitivo [6].

III. TRABALHOS RELACIONADOS

Os trabalhos relacionados contribuíram para a definição das
técnicas utilizadas neste trabalho. Moissa, em [7], usou o STI
Eletrotutor, onde o agente Percepção foi inserido no sistema,
assim como, um conjunto de funcionalidades para oferecerem
suporte aos estados motivacionais identificados por este novo
agente. Objetivo do autor foi fazer com que o agente Percepção
monitorasse a comunicação entre a interface e o STI.

Portanto, esse agente Percepção tem finalidade semelhante
ao agente Facilitador deste trabalho, pois também monitora os
estímulos do ambiente. Além disso, o agente Facilitador
participa efetivamente da comunicação entre os agentes
pedagógicos do STI. É importante destacar que, o Eletrotutor
usa linguagem de comunicação e protocolos baseado no padrão
KQML, diferentemente deste trabalho. Assim, o Eletrotutor
também trabalha com troca de mensagens.

O STI usado no presente trabalho pode ser usado para o
ensino-aprendizagem de qualquer conteúdo, armazenado na
base de conhecimento do sistema. Entretanto, diferentemente
deste STI, os STIs usados em [8] e [9] possuem conteúdo
específico. Segundo [8], o STI MathTutor é usado para auxiliar
os estudantes sobre os fundamentos da estrutura da informação
para os estudantes de Engenharia de Controle e Automação. O
STI usado em [9] é destinado ao ensino de Lógica Matemática.

Os autores do artigo [8] não desenvolveram o STI
conhecido como MathTutor, apenas descreveram a utilização
dos agentes conectivos em um STI e, apresentaram as
características do sistema estudado. Com foco no STI base,
pode-se perceber que o MathTutor se assemelha por usar a
arquitetura de troca de mensagens, mas se diferencia pelo fato
do STI MathTutor usar as padrão KQML para a comunicação.

Segundo [9], o HALYEN foi desenvolvido com base na
plataforma de desenvolvimento JADE que, segue as
especificações FIPA [10]. Contudo, este trabalho também se
baseia neste padrão, mas o STI base não foi desenvolvido com
auxílio de framework, como o JADE. Uma semelhança entre os
trabalhos está relacionada à figura de um agente centralizador,
chamado de agente Facilitador no presente trabalho e, agente

Coordenador no STI HALYEN. Ambos os agentes gerenciam as
mensagens recebidas e enviadas pelos demais agentes.

IV. DESENVOLVIMENTO DO MECANISMO DE COMUNICAÇÃO

Inicialmente, foram levantadas as necessidades do STI base
(problemas a serem solucionados). Em seguida, foi definida a
linguagem de programação, o protocolo de comunicação e o
formato das mensagens a serem usadas durante o
desenvolvimento do mecanismo de comunicação. Na fase da
heurística foi definido o algoritmo usado para determinar o
agente que deve iniciar a interação com o estudante. Em
seguida, foi realizada a integração de todas as etapas anteriores
no STI base. Cenários de interação foram desenvolvidos para
validar o mecanismo. Por fim, as decisões dos agentes puderam
ser analisadas com auxílio de um questionário respondido por
estudantes que usaram o STI.

A. Aspectos de implementação

Os agentes pedagógicos interagem com o estudante sempre
que novos estímulos forem gerados no mesmo: pular uma
página, voltar para outra página a partir da página de
exercícios, permanecer muito tempo ou pouco tempo em uma
página. Além disso, os agentes também podem gerar perguntas
aleatórias sobre o assunto (aula) tratado no ambiente, caso o
estudante fique algum tempo na página de exercícios.

Foram realizados diversos testes para levantar as
necessidades do STI em questão, especialmente nos problemas
relacionados à comunicação dos agentes pedagógicos. Os erros
encontrados estavam diretamente relacionados à comunicação
dos agentes com o estudante, pois muitas das mensagens eram
apresentadas ao mesmo tempo para os estudantes. Portanto,
isto poderia confundir o aluno, já nesses casos as mensagens
poderiam ser repetitivas ou diferentes.

Após a análise das necessidades do STI, a linguagem de
programação e as ferramentas para o desenvolvimento do
mecanismo de comunicação foram escolhidas. Como o STI e
os agentes pedagógicos foram implementados em Java, pois o
STI foi desenvolvido nesta linguagem. Desta forma, também se
definiu o PostgreSQL como o Sistema Gerenciador de Banco
de Dados de Objeto Relacional do projeto (SGBDOR).

O protocolo que mais se aproximou das necessidades do
STI base foi o FIPA Contract Net Interaction Protocol [10].
Assim, o protocolo desenvolvido foi baseado neste protocolo,
onde algumas alterações foram realizadas, principalmente pelo
fato dos agentes pedagógicos estarem implementados dentro do
próprio, onde os objetos dos agentes pedagógicos apenas são
instanciados. Ou seja, não foi necessário o uso de arquivos
XML para a troca de informação entre os agentes do STI base.

Para a implementação do mecanismo de interação entre os
agentes pedagógicos, foi necessário o desenvolvimento de um
novo agente, chamado de agente facilitador. Portanto, os
agentes pedagógicos não interagem diretamente entre si, essa
comunicação sempre é gerenciada pelo agente facilitador.
Quando o estudante interage com o STI, este novo agente trata
os estímulos gerados no STI e aciona os agentes pedagógicos.

Contudo, esse agente facilitador consulta os agentes
pedagógicos para decidir quem deve iniciar uma interação com

Griesang, Frozza, Molz, Dessbesell Jr and Pieter

126

o estudante. Essa interação considera as habilidades de cada
agente, como por exemplo, apenas a agente tutora Dóris possui
a habilidade de fazer perguntas sobre o assunto estudado na
disciplina. Assim, os agentes pedagógicos apenas conhecem
suas próprias habilidades. Além disso, com o uso do agente
facilitador pode-se adicionar novos agente pedagógicos no
sistema sem que os agentes já existentes precisem ser alterados.

Tecnicamente, os agentes pedagógicos são instâncias de um
objeto agente. Neste momento, apenas são definidas as
habilidades desses agentes. Caso a comunicação fosse
implementada nos próprios agentes, ambos teriam que
conhecer a habilidade do outro agente para a tomada de
decisão. A complexidade aumentaria com a inserção de novos
agentes no ambiente. Portanto, apenas o agente facilitador
precisa conhecer a habilidade dos demais agentes.

Além das habilidades de cada agente pedagógico, o agente
facilitador também considera a quantidade de vezes (número de
interações) que cada agente pedagógico interagiu com o
estudante. Para isto, o agente facilitador usa uma heurística
baseada no método da roleta para tomar sua decisão [11].
Então, o agente que interagiu menos vezes como estudante tem
uma probabilidade maior de ser eleito para iniciar a iteração.
Mas esse método apenas será executado se os agentes
possuírem a habilidade de tratar o mesmo estímulo, como por
exemplo, um pulo de página.

Por fim, cenários de interação foram elaborados, com o
objetivo de validar cada etapa desenvolvida. Por exemplo, um
dos cenários visado à execução de diversas tarefas (estímulos)
no STI para verificar se apenas um dos agentes pedagógicos
iria interagir iniciar a interação com o estudante.

Em seguida, foi adicionada à base de conhecimento do
ambiente uma nova aula, referente ao Novo Acordo
Ortográfico da Língua Portuguesa. Com isso, o ambiente foi
usado por uma turma de Lógica para Computação da UNISC.
Com base na análise de questionários respondidos por esses
estudantes, pode-se comprovar que eles perceberam a maneira
coordenada e não mais simultânea das mensagens enviadas
pelos agentes.

V. CONCLUSÃO

A Este trabalho focou no estudo e no desenvolvimento de
um mecanismo de comunicação entre agentes pedagógicos de
um STI, para permitir a interação coordenada dos agentes
pedagógicos com o estudante. Com isso, foi possível evitar a
comunicação simultânea dos agentes pedagógicos. Portanto, foi
adicionado ao mecanismo de comunicação um protocolo de
interação entre agentes. Antes disto, alguns trabalhos
relacionados também foram estudados para determinar as
técnicas usadas no desenvolvimento do trabalho.

Optou-se pelo desenvolvimento de um protocolo baseado
no FIPA [10]. Também foi desenvolvido o agente facilitador
que, por sua vez, possui a função de facilitar/gerenciar os
processos de comunicação. Assim, o protocolo de comunicação
desenvolvido visa à troca de mensagens entre os agentes
pedagógicos e o agente facilitador. Esse novo agente visa

auxiliar a tomada de decisão, ajudando a determinar qual dos
agentes deve interagir com o estudante.

Então, o agente facilitador usa uma heurística baseada no
Método da roleta para a tomada de decisão. Esse método
consiste em privilegiar o agente que interagiu menos vezes
com o estudante, dando mais oportunidades para que esse seja
o próximo agente escolhido para iniciar a interação. Entretanto,
é importante destacar que o método apenas é executado quando
mais de um agente possuir a habilidade de tratar o estímulo
gerado e recebido pelo agente facilitador.

A linguagem Java foi usada no desenvolvimento, pois o
STI também foi desenvolvido em Java. Assim, o PostgreSQL
foi usado para o armazenamento e gerenciamento da base de
conhecimento do sistema. Para a validação do mecanismo de
comunicação desenvolvido, foram gerados cenários de
interação. Por fim, o STI também foi avaliado por estudantes
da disciplina de Lógica para Computação da UNISC. Portanto,
pode-se concluir que o mecanismo de comunicação atendeu
satisfatoriamente as necessidades de comunicação dos agentes
pedagógicos com o estudante.

REFERENCES

[1] Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M.,
Hawgood, G, “Cognitive ad gender factors influencing navigation in
virtual environment”. In International Journal of Human - Computer
Studies, 2000, p. 223-249. .

[2] Guardia, R. B, “Asesores Inteligentes para apoyar el Proceso de
Enseñanza de Lenguajes de Programación”. Dissertação de mestrado em
Ciências da Computação. ITESM (Instituto Tecnológico y de Estudios
Superiores de Monterrey), 1997. México.

[3] Gürer, D, “The Use of Distributed Agents in Intelligent Tutoring”. In:
It’s Workshop on Pedagogical Agents, 1998. San Antonio, Texas.

[4] Wooldridge, M, “An Introduction to Multiagent Systems”. In
Department of Computer Scienceat the University of Liverpool, 2009.
Editora: John Wiley & Sons.

[5] Kühleis, R, “CHATTERDÓRIS – Um agente pedagógico com interação
em linguagem natural”. In Universidade de Santa Cruz do Sul (UNISC),
monografia, 2011.

[6] Frozza, R., Silva, A. A. K. Da, Schreiber, J. N. C., Lux, B., Molz, K. W.,
Kipper, L. M., Borin, M. P., Carvalho, A. B. De, Baierle, J. L., Sampaio,
L, “Agentes Pedagógicos Emocionais atuando em um Ambiente Virtual
de Aprendizagem”. In RENOTE - Revista Novas Tecnologias na
Educação, UFRGS, 2011.

[7] Moissa H. E, “Arquitetura de um Agente Identificador de Fatores
Motivacionais e Afetivos em um Ambiente de Ensino e Aprendizagem”.
In Universidade Federal do Rio Grande do Sul (UFRGS), 2001. Porto
Alegre/RS.

[8] Frigo, L. B., Pozzebon, E., Bittencourt, G, “O Papel dos Agentes
Inteligentes nos Sistemas Tutores Inteligentes”. In Anais do WCETE -
World Congress on Engineering and Technology Education, 2004. São
Paulo/SP.

[9] González, S. M.; Tamariz, A. R.; Carneiro, E. C.; Almeida, J. S. de,
“Agentes Inteligentes no Ambiente Virtual de Ensino de Lógica
Halyen”. In Conferência IADIS Ibero-Americana WWW/Internet 2007,
Universidade Candido Mendes, Campos dos Goytacazes, RJ, Brasil.

[10] FIPA “Foundation for Intelligent Physical Agents”. http://www.fipa.org,
2013.

[11] Oliveira, J. R. F, “O uso de algoritmos genéticos na decomposição
morfológica de operadores invariantes em translação aplicados a
imagens digitais”. Tese Doutorado em Computação Aplicada - Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 1998.

Development of a communication mechanism between Pedagogical Agents in a Virtual Learning

Environment

127

Collection Module Data To Support a Pedagogical

Agent Affective

Marcus Rosa
Curso de Ciência da Computação - DINF

Universidade de Santa Cruz do Sul (UNISC)
Santa Cruz do Sul – RS – Brasil

marcus.mecks@gmail.com

Andrea Aparecida Konzen
Departamento de Informática - DINF

Universidade de Santa Cruz do Sul (UNISC)
Santa Cruz do Sul – RS - Brasil

Programa de Pós-Graduação em Informática na Educação

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre - RS – Brasil

andrea@unisc.br

Abstract— This paper describes the development of a module to

collect quantitative data in order to assist a computacional
pedagogical and affective agent called 'MagaVitta'. This agent is
part of the virtual game simulation of cities called 'Città'. The
data collected by this module will assist the affective pedagogical

agent to understand the current state of the simulation, allowing
to infer emotions and display messages that will assist the student
in the construction of the city in order to learn how to maintain
the ecological balance of the city.

Keywords—affective agent; affective pedagogical agent;

emotions; student

I. INTRODUÇÃO

A Computação Afetiva, ramo da Inteligência Artificial, surgiu
em meados da década de 1990 ao se perceber que mesmo um
computador dito inteligente, capaz de resolver problemas de
maneira lógica, não era, de fato, verdadeiramente inteligente.
Desenvolver computadores emocionalmente inteligentes tem
sido então um dos objetivos desse novo ramo da Inteligência
Artificial uma vez que somos seres que se relacionam
afetivamente o tempo todo. Somos seres sociais, inteligentes e
também emotivos. Todas essas qualidades são indissociáveis e
podem ser aplicadas na nossa relação com os computadores
[7].

 Dessa forma, a Computação Afetiva acabou, naturalmente,
indo ao encontro da informática aplicada à educação, pois ela
pode atribuir características afetivas aos agentes pedagógicos
computacionais usados em sistemas tutores, jogos educativos e
demais ambientes de ensino onde estudantes interagem com
avatares virtuais.

Um projeto de criação de cidades virtuais com tecnologias
de aprendizado e simulação de uma universidade federal em
que o sistema educativo usa essa nova abordagem possui seu
próprio agente pedagógico computacional afetivo. Dessa
forma, neste trabalho foi desenvolvido um módulo para o
agente pedagógico deste ambiente virtual que coleta dados
quantitativos das construções inseridas na cidade virtual e das
ações do usuário dentro do ambiente. Com esses dados, o

agente, que está em constante contato com o usuário, infere
emoções, tais como medo, quase sempre relacionado ao perigo
de um desastre ecológico, ou alegria quando o usuário faz algo
de bom para o meio ambiente.

Este artigo possui as seguintes sessões: (II) conceitos sobre
computação afetiva, (III) o agente afetivo Maga Vitta, (IV) o
módulo de coleta de dados quantitativos e, (V) conclusões
finais.

II. COMPUTAÇÃO AFETIVA

Segundo Berch [2], a ideia de que razão e emoção são coisas
distintas tem sido discutida desde Sócrates nos anos de 470 a
399 a.c e perdurou até o final do século XIX. Porém, no ultimo
século, novos estudos de diversos pesquisadores (Piaget,
Damásio e Le Doux, Vygotsky) acabaram por reescrever essa
suposição. A afetividade passou a ser vista como parte do
processo cognitivo.

Para Picard [7], a Computação Afetiva é a “computação
que está relacionada com, que surge de ou deliberadamente
influencia emoções”. Assim, se quisermos computadores
genuinamente inteligentes, adaptáveis às nossas necessidades e
que interajam de forma natural conosco, então estes
computadores precisarão de habilidades para reconhecer e
expressar emoções, ter emoções ou até mesmo possuir
inteligência emocional.

III. O AGENTE MAGA VITTA

Maga Vitta é o nome dado ao agente pedagógico que está
inserido no jogo chamado Città [5] e que, por sua vez, faz parte
de um projeto maior: de uma universidade federal que está
relacionado com criação de cidades virtuais com tecnologias
para aprendizado e simulação [4].

Conforme essa definição, o agente Maga Vitta pode ser
considerado um companheiro virtual de aprendizado. Esse
agente foi inicialmente proposto em [1]. Sua definição é de um
agente autônomo ECA (Embodied Conversational Agent)
dotado de capacidades afetivas e que auxilia usuários durante o

Collection Module Data to Support Pedagogical Agent Affective

129

processo de construção de uma cidade virtual.
As emoções mostradas são baseadas em uma avaliação

individual ou na avaliação de um significado cognitivo de um
evento conforme descrito dentro do modelo OCC proposto por
[6]. Neste modelo são analisadas as ações do usuário ao dispor
os elementos da cidade propondo sugestões, questionamentos e
informando sobre o processo de construção da cidade.

Em sua arquitetura, o agente Maga Vitta acaba mesclando
noções de dois modelos cognitivos: o tradicional modelo OCC
[6] que contém o appraisal das principais emoções inferidas
pelo agente, e o modelo de [8], que considera a emoção
surpresa que não é considerada pelo modelo OCC. Dessa
forma, as emoções do agente são: Alegria, Tristeza,
Preocupação, Surpresa, Raiva, Nojo e Medo.

Para que o agente Maga Vitta entenda o usuário, o agente
constrói um Modelo do Usuário. Este modelo é obtido através
da interpretação das ações do aluno durante a construção da
cidade virtual. Esse modelo é guardado no perfil do usuário
junto com outras características observadas durante a
manipulação do ambiente virtual [4]. O Modelador ECA do
agente possui a estratégia de sempre capturar o modelo do
usuário para poder gerar uma coleção de recursos de fala e de
movimentos faciais. O Organizador de Planos de Ação usa o
modelo ECA gerado pelo Modelador ECA para organizar a
coleção de ações do agente.

IV. MÓDULO DE COLETA DE DADOS QUANTITATIVOS

Para que o agente pedagógico possa demonstrar emoções e
exibir as mensagens de aviso em resposta às ações do usuário,
foi desenvolvido um módulo para coleta dos dados do
ambiente virtual, o jogo Città.

Os dados são coletados das variáveis que representam os
recursos do jogo: água, alimento, energia, atendimento médico,
lixo e esgoto. O módulo a cada nova iteração do jogo, analisa
todas as seis variáveis em busca de alterações nos valores
desde a última análise. As mudanças de valores são salvas em
uma base de dados para fins históricos e posterior consulta.

Dependendo do valor coletado o módulo responde ao
agente informando a gravidade dessa variável e também indica
qual a emoção apropriada. Com esses dados o agente pode
buscar na base de dados a mensagem a ser exibida para o
usuário no ambiente virtual.

 Os valores das variáveis são atualizados sempre que
uma construção é adicionada ou removida do jogo. As
construções disponíveis no jogo adicionam valores diferentes
para cada recurso, dependendo da quantidade de pessoas que
cada uma acomoda. As construções são: casa (4 pessoas),
prédio (40 pessoas), escola (40 pessoas), hospital (80 pessoas),
igreja (5 pessoas), fábrica (80 pessoas), prefeitura (30 pessoas),
mercado (20 pessoas), fazenda (10 pessoas), estação de
tratamento de água (5 pessoas), estação de tratamento de
esgoto (5 pessoas) e estação eólica (5 pessoas).

Também foi necessário determinar quanto uma pessoa
consume de recursos (água, energia, alimento, atendimento

médico) e produz detritos (lixo e esgoto). Depois de pesquisas
em sites de concessionárias de água e eletricidade e de outros
sites de ONGs chegou-se aos valores mostrados na Tabela 1.

TABELA 1. VALORES DE CADA RECURSO PARA UMA PESSOA

Variável Valor Real
Água (Consome) 150 litros / dia / habitante
Alimento (Consome) 2,0 kg / dia / habitante
Energia (Consome) 3,2 kwa / dia / habitante
Esgoto (Produz) 90 litros / dia / habitante
Espaço (Consome) 1 m2
Lixo (Produz) 20 kg. / dia / habitante

A. Definição da gravidade de uma situação

 As variáveis do jogo são todas balizadas conforme uma
escala de gravidade de 11 níveis, indo de -5 até +5. Essa escala
é usada para calcular o quão grave é uma situação, isso é, o
quanto um recurso está faltando (valores negativos) ou
sobrando (valores positivos) bem como suas intensidades. As
intensidades maiores (-5 e +5) representam valores de
gravidade extrema para falta e excesso, respectivamente. A
medida que o valor tende a zero a gravidade vai amenizando de
intensidade até chegar no ponto de equilíbrio, zero. Com isso,
quanto mais longe do ponto de equilíbrio, pior é uma situação,
seja sobrando ou faltando um recurso do jogo [3].

A Figura 1 mostra a escala usada para inferir a gravidade de
uma variável.

Fig. 1. Escala de gravidade da falta ou excesso de um recurso.

Com a escala também é possível inferir emoções, assim
como os níveis mais distantes do ponto de equilíbrio
representam situações mais graves, eles também representam
emoções mais intensas, quase sempre medo, raiva ou tristeza,
variando conforme o tipo de variável. Como o agente
pedagógico foi desenvolvido para estar preocupado com o
meio ambiente, a emoção de alegria é demonstrada no ponto de
equilíbrio. A emoção de preocupação é demonstrada nos níveis
1 e 2 de cada lado da escala. Cada intensidade de cada variável
diferente possui uma mensagem correspondente que possui o
objetivo de alertar o usuário do ambiente virtual sobre a
situação que a sua cidade está passando.

A variável água, por exemplo, no ponto de equilíbrio, faz o
agente responder com a mensagem “Os moradores da sua
cidade agora estão felizes. Não falta água nem para regar as
plantas. Parabéns!” demonstrando, junto com a mensagem, a
emoção de Alegria. Na gravidade -2, o agente alerta o usuário
que há uma falta razoável de água exibindo a mensagem “Uma
cidade não pode crescer sem água. Que tal construir algumas
estações de água para sua cidade?”. Nesse caso, a emoção
demonstrada é de Preocupação. Quando a gravidade chega à -
5, demonstrando falta grave de água na cidade (em proporção
ao número de habitantes), o agente responde com a mensagem

Rosa and Konzen

130

“A situação é gravíssima. A sua cidade não irá crescer mais
enquanto não houver água nela. Construa algumas estações
coletoras de água o quanto antes!”, junto com a emoção Medo.

B. Decisão sobre quando mostrar uma mensagem

 As mensagens consideradas padrão exibidas pelo agente são
mostradas conforme a resposta do algoritmo responsável por
analisar os valores coletados do ambiente virtual.

Para qualquer uma das variáveis definidas no ambiente, o
agente verificará essa variável comparando-a com o último
valor coletado. Quando houver a mudança de uma variável x
no ambiente, ela será comparada com o último valor
correspondente gravado no módulo ou com x¹. Se o valor for
diferente a variável do ambiente ou x², é comparada com zero
para saber se o ambiente está equilibrado para o item que
aquela variável representa. Se sim, a mensagem de incentivo
parabenizando o aluno por ter conquistado o ponto de
equilíbrio é exibida. Se a variável não for zero, então
existe algum desequilíbrio acontecendo no ambiente. Se o
valor x² for maior que o valor na base de dados (x¹), então
houve uma piora no ambiente, caso contrário, houve uma
melhora no ambiente. Nesse ponto, a mensagem
correspondente, positiva ou negativa, será escolhida conforme
o valor de x, assim o novo valor de gravidade para o recurso
em questão é então gravado no módulo.

Este módulo foi finalizado, no entanto, para que o mesmo
seja validado é necessário integrar com os outros módulos do
jogo já existentes e módulos que ainda estão em processo de
desenvolvimento. Assim, poderá ser considerado a base para
próximas implementações tanto do jogo quanto do agente
pedagógico.

Na medida em que o jogo fica mais complexo, incluindo
novas maneiras de causar desequilíbrios ecológicos como
fatores de poluição, desmatamentos ou mesmo desastres
naturais ou não, o módulo acompanhará esse crescimento
porque possui uma estrutura simples, porém robusta e flexível.

V. CONSIDERAÇÕES FINAIS

Conforme Picard [7] a Computação Afetiva une sistemas
computacionais à capacidade de influenciar, expressar ou
reconhecer emoções. A emoção é uma parte do processo
racional, bem como, tem papel fundamental na capacidade de
aprendizado de usuários, pois um aluno motivado aprende
mais.

O módulo proposto e desenvolvido neste trabalho serve de
auxílio ao agente pedagógico Maga Vitta. Sua principal função
é de coletar os dados gerados pelo ambiente virtual e, através
disso, ser capaz de determinar a melhora ou piora nas
condições do ambiente observado. Conforme a evolução do
ambiente, emoções são inferidas o que concede ao agente,
características afetivas que servem para que ele tenha uma
relação mais íntima com o usuário do jogo. Isso melhoraria a

experiência do usuário dentro do ambiente e facilitaria a
compreensão da preocupação com o meio ambiente.

Embora o desenvolvimento atual do jogo Città não
contemple alguns itens importantes vistas, como os marcadores
de poluição do ar, da água e da terra e penalidades na produção
de recursos devido à poluição, o módulo foi planejado já
prevendo esses dois aspectos. Qualquer outra necessidade do
jogo, ou até mesmo do agente, quando este for desenvolvido,
poderá ser contemplada pelo módulo. Além disso, o módulo
também serve de base sólida para o desenvolvimento do agente
que passa a contar com os dados coletados para finalmente ser
desenvolvido, atuando no ambiente para o qual foi planejado.

Novas implementações podem ser sugeridas partindo do
que foi construído nesse trabalho como, por exemplo: coleta de
novos tipos de dados quantitativos, onde atualmente, o agente
já recebe informações do módulo sobre os dados de água,
alimento, energia, atendimento médico, lixo e esgoto. Esses
dados também são salvos numa base de dados para posterior
consulta. Seria natural, então, poder coletar outros tipos de
dados como poluição de terra, água e ar e; novas inferências
com base nos dados quantitativos, onde os dados quantitativos
salvos na base de dados, hoje, servem apenas como histórico.
Seria interessante então usá-los para que o agente aprenda mais
sobre a evolução da cidade construída pelo aluno levando em
consideração o tempo de vida da cidade.

AGRADECIMENTOS

Agradecemos ao Departamento de Informática da UNISC –
Universidade de Santa Cruz do Sul e ao Programa de Pós-
Graduação em Informática na Educação (PGIE) da UFRGS –
Universidade Federal do Rio Grande do Sul pelo apoio no
desenvolvimento da pesquisa e publicação deste artigo.

REFERÊNCIAS
[1] Axt, M. and Longhi, M. T. and Silveira, P. D. and Guimarães, L. N.

(2008) “MagaVitta: Conversational Ecological Agent in a Interactive
Collective Construction Environment for Basic Education”, In: Agent-
Based Tutoring Systems by Cognitive and Affective Modeling, Edited
by Viccari, R. M. and Jaques, P. A. and Verdin, R. Porto Alegre.

[2] Bercht, M. (2001) “Direção a Agentes Pedagógicos com Dimensões
Afetivas”. Porto Alegre, Brasil. Academic Press.

[3] Konzen, A. ; Braitback, O.; Kist, L. ; Anjos, A. ; Moraes, L. ; Lima, C. ;
Muller, D. ; Axt, M. (2011) “Maga Vitta: agente conversacional
aplicado ao jogo educacional Città.” In Simpósio Brasileira de
Informática na Educação, Aracajú - 22 SBIE/17 WIE.

[4] Longui, M. T. and Nedel, L. P. and Viccari, R. M. and Axt, M. (2004)
“Especificação e Interpretação de Gestos Faciais em um Agente
Inteligente e Comunicativo”. In: SBC Symposium on virtual reality. São
Paulo, Brasil.

[5] Müller, D. N.; Oliveira, O. L. B. de; Remião, J. A. A.; Silveira, P. D.;
Martins, M. A. R.; Axt, M. (2009) “Virtual Cities as a Collaborative
Educational Environment.” In Education and Technology for a Better
World, pages 112-120, Springer.

[6] Ortony, A. and Gerald, L. C. and Allan C. (1988) “The Cognitive
Structure of Emotions.” Cambridge, USA.

[7] Picard, R. (1997) “Affective Computing”. Cambridge, USA. Publishing
Press.

[8] Roseman, I. J. and Spindel, M. S. and Jose, P. E. (1990) “Appraisals of
emotion-eliciting events: Testing a theory of discrete emotions”. In
Journal of Personality and Social Psychology. Vol. 59.

Collection Module Data to Support Pedagogical Agent Affective

131

Animated pedagogical agent as learning companion

Jun Hong Silva, Letı́cia Simioni Couto, Carla A. Barvinski and Valguima V. V. A. Odakura
Faculdade de Ciências Exatas e Tecnologia (FACET)
Universidade Federal da Grande Dourados (UFGD)

Email: {junx.03,leticiascouto}@gmail.com
{carlabarvinski,valguimaodakura}@ufgd.edu.br

Resumo—This work presents an Animated Pedagogical Agent
(APA) developed to run in a Virtual Learning Environment
(VLE) acting as companion student learning, trying to meet the
emotional needs that environment. Was applied a survey with
undergraduate students in a course in Computer whose results
indicate the success of the APA.

Resumo—Neste trabalho é apresentado um Agente Pedagógico
Animado (APA) desenvolvido para executar em um Ambiente
Virtual de Aprendizagem (AVA) atuando como companheiro de
aprendizagem do aluno, tentando suprir as necessidades afetivas
nesse ambiente. Foi aplicada uma pesquisa de opinião com alunos
de graduação em um curso de Computação cujos resultados
apontam o sucesso do APA.

I. INTRODUCTION

Segundo Andrade e Vicari [1] os Ambientes Virtuais de
Aprendizagem (AVA) estão longe de apresentar um modelo co-
laborativo como se deseja atingir. A ênfase, segundo os autores,
quase sempre está no indivı́duo. O ambiente de aprendizagem
computacional também deve propiciar afetividade e motivação
na interação com o aluno.

Uma maior percepção da afetividade pelos alunos, pode
propiciar uma elevação da autoconfiança, iniciando um pro-
cesso de motivação intrı́nseca que os estimula a interagir mais
fortemente com o AVA [1]. Contudo, a afetividade tem um
papel importante na aprendizagem, e este trabalho apresenta o
desenvolvimento de um Agente Pedagógico Animado (APA)
em um AVA com o objetivo de ser um companheiro de
aprendizagem para o aluno.

O texto está organizado como se segue. Na seção II um
APA é apresentado com ênfase na aparência do agente. Os
resultados experimentais são detalhados nas seções II-A e II-B.
Por fim, na seção III as considerações finais são apresentadas.

II. AGENTE PEDAGÓGICO ANIMADO (APA)

Segundo Gulz e Haake [2], Agentes Pedagógicos Ani-
mados (APA) são visualmente representáveis, apresentam ca-
racterı́sticas fı́sicas geradas computacionalmente e possuem
papéis pedagógicos, adotando uma postura de instrutor virtual,
mentor ou companheiro de aprendizagem. Os trabalhos de
Gomes, Barbosa e Geyer [3], Baptista [4], Frozza et al [5]
e Fontes et al [6] relatam o uso de um APA exercendo o
papel de companheiro de aprendizagem. Um companheiro de
aprendizagem pode ser caracterizado como alguém de idade
próxima ou similar, que compreende o mundo de maneiras
semelhantes [7]. Portanto, um APA, é um agente inteligente
que tem um papel pedagógico, orientando e melhorando o
aprendizado do aluno.

Figura 1. Agente pedagógico animado Carl.

O aspecto mais importante da concepção de um APA é
sua aparência. Segundo Baylor [8] a aparência antropomórfica
de um agente pode não ter influência no aprendizado mas
tem grande impacto na motivação do estudante. Além disso,
Baylor e Kim [9] comprovaram que agentes com aparência
semelhante aos aprendizes auxiliam no processo motivacional,
sendo influentes aspectos como gênero, etnia e idade. Baylor
e Kim [9] comprovaram que uma escolha cuidadosa do APA
pode influenciar tanto na aprendizagem dos alunos, como
também estimular sua capacidade e competência para realizar
as atividades.

Considerando que o APA proposto tem papel de com-
panheiro na aprendizagem, e que o público alvo são estu-
dantes universitários da área de Computação, definiu-se que
a aparência ideal é a de um jovem e do sexo masculino.
Partindo desta definição, foi escolhido o modelo oferecido
pela Mixamo1 representado na Figura 1. O agente expressa
diferentes emoções em resposta ao desempenho do aluno em
uma atividade proposta.

A definição das ações expressas pelo APA se baseiam
nos trabalhos de Frozza et al. e Sansonet et al. [5], [10], os
quais utilizaram o modelo de emoções OCC, desenvolvido por
Ortony, Clore e Collins, cuja iniciais dos sobrenomes dão nome
ao modelo. As ações implementadas no APA para expressar
emoções são representadas por movimentos faciais, juntamente
com movimentos corporais, conforme descrito na Tabela I.

Para a definição e a criação das ações do agente foi
utilizado o aplicativo Blender2, um software de código aberto
que permite criação, modelagem, animação, texturização e
renderização. Posteriormente as animações são carregadas e

1Disponı́vel em http://www.mixamo.com/. Acesso em Abril de 2013.
2Disponı́vel em http://www.blender.org/. Acesso em Março de 2013.

Animated pedagogical agent as learning companion

133

Expressão Descrição
Parado Movimentos leves das mãos, pescoço

e tórax, dando a impressão de que o
agente está parado.

Olá Sorriso seguido de um aceno com a
mão esquerda.

Aplaudir Rosto alegre e mãos com movimentos
de aplauso.

Adeus Leve sorriso acompanhado de um
aceno de uma das mãos da direita para
a esquerda.

Positivo Movimento do braço direito com pole-
gar para cima, rosto com sorriso.

Decepção Expressões de tristeza no rosto, com o
pescoço ligeiramente inclinado e com
as duas mãos sobre o rosto.

Tente novamente Expressão de tristeza e braços curva-
dos.

Vamos para a próxima Braço direito com gesto de frente para
trás e fechando a mão, com leve movi-
mento da cabeça.

Tabela I. AÇÕES DO APA DESENVOLVIDO.

enviadas para o Unity3D3. Nesta etapa, é composto e definido o
cenário para o agente e a criação de um javascript que contém
estruturas para a chamada das ações do agente e o processo
de comunicação com um AVA. O AVA escolhido para inserir
o APA foi a plataforma Moodle4, devido à ampla utilização
neste segmento e por ser OpenSource.

O modelo do agente convertido em um webplayer através
do Unity3D é instalado no mesmo servidor em que está o
Moodle. O processo de interação entre o Moodle e APA
só é realizado após o estabelecimento de comunicação entre
webplayer e e consultas ao banco de dados através de uma
página php criada e inserida no Moodle. São esses dois
últimos componentes que acionam as animações, propiciando a
interação entre as respostas dadas pelos alunos no questionário
do Moodle e o APA. A Figura 2 ilustra a arquitetura de
implementação do APA.

Figura 2. Arquitetura da implementação do APA.

O agente fica disponibilizado em um bloco no Moodle, no
lado direito da tela, com dimensões que não causam distrações
ao aluno, conforme a Figura 3. A ação do agente depende de
cada resposta do aluno, variando de parabenização no caso de
acerto até estı́mulo para estudar mais no caso de erro.

A Figura 3 ilustra o uso do APA em uma intervenção no
AVA, em decorrência de resposta errada. Nesta situação, o APA

3Disponı́vel em http://unity3d.com/. Acesso em Março de 2013.
4Disponı́vel em https://moodle.org/. Acesso em Abril de 2013.

Figura 3. APA Carl no AVA dando feedback automático ao aluno.

expressa decepção conforme descrito na Tabela I e apresenta
uma mensagem textual de estı́mulo ao aluno.

O APA apresenta as expressões definidas na Tabeça I.
No caso de resposta correta, o APA pode utilizar as ações
de aplauso ou positivo, juntamente com mensagem textual de
parabenização.

Esse APA foi avaliado por um experimento aplicado em
uma turma de alunos do curso de Bacharelado em Sistemas
de Informação. O objetivo central da pesquisa de opinião
foi avaliar se a presença do APA como companheiro de
aprendizagem elevaria a motivação dos alunos para responder
um questionário.

Optou-se por dividir a turma em três grupos para avaliar
a eficácia dos estı́mulos, pois haviam, ao nosso ver, três
modalidades desses. A primeira e mais rudimentar é o próprio
feedback fornecido pelo Moodle, a segunda eram as mensagens
a serem proferidas para os alunos e a terceira, as mesmas
mensagens emitidas pelo APA. Desse modo, avaliamos na
pesquisa de opinião esses três tipos de estı́mulos.

Cada grupo respondeu um mesmo questionário, contudo
com diferentes formas de apresentação do feedback au-
tomático. Ao todo participaram 21 alunos, sendo 7 em cada
grupo, divididos de forma aleatória. O experimento foi dividido
em duas fases. A primeira fase consistiu na aplicação do
questionário eletrônico de assunto relacionado a uma disciplina
do curso. Enquanto que na segunda fase foi aplicada pesquisa
de opinião visando mapear as percepções de cada grupo.

A. Fase 1: Aplicação de questionário eletrônico avaliativo

Cada um dos 3 grupos respondeu ao questionário eletrônico
sobre o conteúdo da disciplina de gerência de projetos. O
feedback do primeiro grupo foi o convencional do Moodle,
as mensagens de feedback apresentadas ao segundo e terceiro
grupo foram as mesmas, o diferencial foi a intervenção do
APA como portador da mensagem de acerto ou erro para
esse último. As mensagens buscavam estimular o aluno a
prosseguir respondendo o questionário quando em situação de
adversidade (erro), e a suprir as deficiências de conhecimento
estudando mais. Nos demais caso, as mensagens eram de
parabenização pelo acerto.

B. Fase 2: Pesquisa de opinião

Após a aplicação dos questionários eletrônicos os 3 grupos
realizaram a segunda fase, respondendo a uma pesquisa de
opinião sobre sua percepção de cada abordagem de feedback.
Nessa pesquisa buscou-se saber o sexo e a faixa etária dos

Couto, Silva, Barvinki and Odakura

134

participantes, seu conhecimento e utilização de avatares e
motivação em responder o questionário. Os dados obtidos
foram:

• 86,00% dos alunos está na faixa etária dos 20 a 30
anos, 9,00% tem mais do que 30 anos e 5,00% tem
menos que 20 anos.

• O grupo era predominantemente masculino com
86,00% homens e apenas 14,00% mulheres.

• A grande maioria, 95,00% disse que já sabiam o que
é um avatar, e 76,00% desses participantes já haviam
utilizado anteriormente um avatar na Internet.

O grupo está na faixa etária de 20 a 30 anos, ou seja, são
em maioria jovens e do sexo masculino. Além disso, a maioria
já havia tido contato com um avatar.

Os alunos foram questionados se eles acharam divertido
responder o questionário. Para 42,86% do grupo 1, 71,43%
do grupo 2 e 71,43% do grupo 3 a resposta foi sim. O
resultado aponta a importância do uso de recurso adicional para
feedback, afinal os ı́ndices foram mais elevados para o APA e
feedback textual do que o modo convencional do Moodle.

Indagou-se aos alunos se haviam se sentido estimulados
a responder o questionário. Para: 57,14% do grupo 1, 100%
do grupo 2 e 71,43% do grupo 3 a resposta foi sim. Con-
frontando os resultados, constatou-se que a presença do APA
e do feedback textual estimularam mais do que o feedback
experimentado pelo grupo 1.

Os grupos 2 e 3 avaliaram o teor das mensagens utilizadas
no feedback do APA e do recurso textual. Os resultados foram:

• 57,14% dos participantes do grupo 2 e 71,43% dos
participantes do grupo 3 consideraram as mensagens
motivantes.

• A linguagem utilizada agradou 85,71% dos participan-
tes do grupo 2 e 71,43% dos participantes do grupo
3.

Os dados demonstram que as mensagens utilizadas foram
motivantes, contudo o feedback textual foi melhor recebido
pelos alunos. Percebeu-se que a mesma mensagem quando
proferida pelo AVA não teve a mesma eficiência, o que requer
maiores estudos quanto à linguagem mais adequada para o
agente.

O grupo 3 respondeu questões especı́ficas avaliando carac-
terı́sticas visuais do APA. Os resultados obtidos foram:

• Em relação à aparência do agente, 71,43% dos partici-
pantes preferem feições humanas e 28,57% preferem
animações.

• Todos os participantes, 100,00% prefeririam interagir
com um avatar feminino e não masculino. Desses,
85,71% eram do sexo masculino.

• A maioria dos participantes, 71,43%, preferem reali-
zar um questionário com o acompanhamento de um
avatar.

• 85,71% participantes consideraram o avatar simpático.

Os dados reforçam os estudos teóricos que apontam que a
feição humana é a aparência ideal para um APA. No que se
refere ao gênero, um avatar do sexo masculino não atendeu
às expectativas do alunado. Resta saber se a preferência se
mantém quando o público que interagir com o APA for do
sexo feminino.

A maioria dos alunos já havia utilizado algum tipo de
avatar e preferem a sua companhia. Não se pôde definir se
essa preferência decorre da empatia que se criou entre aluno e
avatar, uma vez que a maioria o considerou simpático, ou de
experiências anteriores positivas.

Os dados demonstraram que o APA como companheiro de
aprendizagem pode ser eficiente e suprir de alguma forma a
lacuna de afetividade que existe em um AVA. Naturalmente,
há a necessidade de aprofundamento e aperfeiçoamento da
aparência e da abordagem, buscando melhores formas de
comunicação.

III. CONSIDERAÇÕES FINAIS

O objetivo da pesquisa foi alcançado com a criação de um
APA de aparência atrativa e motivadora. A pesquisa de opinião
demonstrou que o uso de agentes já está disseminado e sua
aceitação é boa. A sua aplicação no âmbito pedagógico obteve
sucesso, suas intervenções foram consideradas estimulantes,
alegres e agradáveis. Os dados também demonstram que é
necessária a realização de novas pesquisas que orientem quanto
ao conteúdo das mensagens verbalizadas pelo APA.

REFERÊNCIAS

[1] A. F. Andrade and R. M. Vicari, “Construindo um ambiente de
aprendizagem a distância inspirado na concepção sociointeracionista de
vygotsky,” in Educação on-line: teorias, práticas, legislação, formação
corporativa., M. Silva, Ed. São Paulo: Loyola, 2003.

[2] A. Gulz and M. Haake, “Design of animated pedagogical
agents-a look at their look,” Int. J. Hum.-Comput. Stud.,
vol. 64, no. 4, pp. 322–339, Apr. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.ijhcs.2005.08.006

[3] R. Gomes, D. N. Barbosa, and C. F. Geyer, “Lassalinho - um agente
pedagógico animado em um ambiente multiagente para educação a
distância,” RENOTE, vol. 3, 2010.

[4] A. C. D. C. BAPTISTA, “Companheiros virtuais em dispositivos
móveis: O caso do pequeno mozart.” Master’s thesis, Universidade do
Aveiro, 2010.

[5] A. A. K. d. S. Rejane Frozza, J. N. C. Schreiber, B. Lux, K. W.
Molz, L. M. Kipper, M. P. Borin, A. B. de Carvalho, J. L. Baierle,
and L. Sampaio, “Agentes pedagógicos emocionais atuando em um
ambiente virtual de aprendizagem,” Revista Renote, vol. 9, 2011.

[6] L. M. de Oliveira Fontes, F. M. M. Neto, F. A. Diniz, D. G. Carlos,
L. J. Júnior, and L. C. N. da Silva, “Um agente pedagógico animado
de apoio à aprendizagem baseada em problema,” IEEE-RITA, vol. 7,
no. 4, pp. 182–188, Nov. 2012.

[7] K. Ryokai, C. Vaucelle, and J. Cassell, “Virtual peers as partners in
storytelling and literacy learning,” J. Comp. Assisted Learning, pp. 195–
208, 2003.

[8] A. L. Baylor, “The design of motivational agents and avatars,” Educa-
tional Technology Research & Development, 2011.

[9] A. Baylor and Y. Kim, “Simulating instructional roles through pe-
dagogical agents,” International Journal of Artificial Intelligence in
Education, vol. 15, pp. 95–115, 2005.

[10] J. P. Sansonnet, D. W. Correa, P. Jaques, A. Braffort, and C. Verrecchia,
“Developing web fully-integrated conversational assistant agents,” in
Proceedings of the 2012 ACM Research in Applied Computation
Symposium, ser. RACS ’12. New York, NY, USA: ACM, 2012, pp. 14–
19. [Online]. Available: http://doi.acm.org/10.1145/2401603.2401607

Animated pedagogical agent as learning companion

135

Dynamic Modeling of Multi-Agent Systems Using

MAS-ML Tool

Francisco R. O. de Lima, Állan R. Feijó, Robert M. Rocha Jr, Igor B. Nogueira, Enyo J. T. Gonçalves, Emmanuel S.

S. Freire, Mariela I. Cortés

Grupo de Engenharia e Sistemas Inteligentes (GESSI)

Departamento de Computação – Universidade Estadual do Ceará (UECE)

Fortaleza, Brasil

{us.robson7, allanfeijo1987, robstermarinho, igor.bnog, savio.essf}@gmail.com, enyo@ufc.br, mariela@larces.uece.br

Abstract — Given the diversity of entities comprising multi-

agent systems (MAS), the modeling of the dynamic aspects is

complex and error prone. Thus, the existence of a tool capable of

modeling of these systems and validating them automatically, can

be crucial in order to increases the productivity. The goal of this

work is present the evolution of MAS-ML tool to provide the

support to the dynamic diagrams of sequence and activities

defined on the MAS-ML 2.0 language.

Keywords — multi-agent system; MAS-ML Tool; dynamic

modeling;

I. INTRODUÇÃO

Em um cenário cada vez mais complexo, sistemas multi-
gente (SMA) vem sendo cada vez mais utilizados para lidar
com essa complexidade, tanto na indústria quanto na academia.
O termo Sistema Multi-Agente (SMA) refere-se à subárea de
Inteligência Artificial que investiga o comportamento de um
conjunto de agentes autônomos, objetivando a solução de um
problema que está além da capacidade de um único agente [1].

Neste contexto, várias linguagens de modelagem,
frameworks de implementação e ferramentas foram criados
para auxiliar o desenvolvimento de SMAs. Dentre eles, a
linguagem MAS-ML (Multi-Agent System Modeling
Language) [2] é capaz de modelar SMAs através dos
diagramas estáticos de classe, papéis, organização, e dinâmicos
de sequência e atividades [3]. A linguagem MAS-ML 2.0 [4]
trata-se de uma extensão para permitir a modelagem de agentes
com diversas arquiteturas internas [1], e seus papéis. Na sua
versão atual, a ferramenta de suporte a modelagem MAS-ML
tool [4] [5] não contempla nenhum diagrama dinâmico previsto
na linguagem de modelagem MAS-ML 2.0, impossibilitando a
modelagem do comportamento do sistema em tempo de
execução. O presente artigo apresenta a evolução da ferramenta
MAS-ML tool relacionada ao desenvolvimento dos diagramas
dinâmicos de MAS-ML 2.0. O artigo é organizado como
segue: Na Seção 2 é apresentado o referencial teórico. Na
Seção 3, a evolução da ferramenta é apresentada. Na Seção 4,
um estudo de caso é ilustrado. Na Seção 5, os trabalhos
relacionados são comparados com as contribuições deste
artigo. E por fim, na Seção 6, são apresentados as conclusões e
os trabalhos futuros.

II. REFERENCIAL TEÓRICO

A. MAS-ML 2.0

MAS-ML [2] é uma linguagem de modelagem que estende
a UML [6] e incorpora o conceito de agente definido no
framework conceitual TAO (Taming Agents and Objects) [7]
para a modelagem de SMAs. Originalmente, MAS-ML foi
projetada para modelar apenas agentes pró-ativos orientados a
objetivos e guiados por planos. Para possibilitar a modelagem
das diversas arquiteturas de agente definidas por Russell e
Norvig [1], Gonçalves [4] evoluiu a linguagem de maneira
conservativa originando MAS-ML 2.0.

MAS-ML 2.0 contempla um conjunto de diagramas
estáticos e dinâmicos. O diagrama de sequência de MAS-ML
2.0 consegue ilustrar diversas capacidades do SMA. Através de
pathnames, podemos representar agentes mudando de um
ambiente, organização, ou papel, e com uso dos estereótipos da
linguagem podemos ilustrar a criação, a destruição e a
interação entre as entidades. Por outro lado, o diagrama de
atividades modela um fluxo de execução através de uma
sequência de unidades subordinadas chamadas de ação. Na
versão 2.0 de MAS-ML a representação de agentes reativos,
baseados em objetivo com planejamento e baseados em
utilidade foi proposta.

B. MAS-ML tool

A ferramenta MAS-ML tool [8] [5] é um ambiente de
modelagem desenvolvido como um plug-in da plataforma
Eclipse [9]. MAS-ML tool foi criada para dar suporte à
modelagem dos diagramas contemplados na linguagem MAS-
ML original, e na sua versão atual, a ferramenta fornece apoio
para a construção dos diagramas de classe, organização, e
papeis de acordo com MAS-ML 2.0. Visto que modelar SMAs
sem o apoio de uma ferramenta torna o trabalho difícil de ser
realizado e, podendo até certo ponto, ser considerado
impraticável, é fundamental que ferramentas sejam propostas
para o uso eficiente da linguagem.

MAS-ML tool foi gerada a partir dos plug-ins GMF
(Graphical Modeling Framework) [10] e EuGENia [11]. O
GMF é um framework para desenvolvimento de editores
gráficos para modelos de domínio. Por outro lado, o EuGENia
é capaz de automatizar os procedimentos necessários para o
desenvolvimento de diagramas utilizando o GMF, cuja

Dynamic Modeling of Multi-Agent Systems Using MAS-ML Tool

137

abordagem é dirigida por modelos utilizando o próprio
metamodelo da linguagem MAS-ML 2.0.

III. EVOLUÇÃO DA FERRAMENTA

A estratégia adotada para implementar as extensões
propostas segue a abordagem dirigida por modelos, utilizada
originalmente para desenvolver a própria ferramenta. Neste
caso é utilizado como modelo central o metamodelo da
linguagem MAS-ML 2.0.

A. Criação do Diagrama de Sequência

O processo de criação do diagrama de sequência para
MAS-ML tool se deu primeiramente, transcrevendo todos os
elementos presentes no metamodelo da linguagem MAS-ML
2.0 para a linguagem Emfatic. Com a transcrição desses
elementos, podemos identificar os elementos presentes no
diagrama de sequência, e associar a eles suas respectivas
representações gráficas.

 A modelagem do diagrama de sequência em MAS-
ML tool prevê adicionalmente a checagem do modelo gerado
de forma a verificar a sua corretude em relação à definição no
metamodelo da linguagem. Desta forma, foi definido na
ferramenta um conjunto de regras de validação implementadas
na linguagem OCL (Object Constraint Language) [11],
descritas na Tabela 1.

TABELA 1 REGRAS DE VALIDAÇÃO DOS MODELOS (DIAGRAMA DE SEQUÊNCIA).

B. Ferramenta Gerada

O ambiente implementado trata-se de um plug-in da
plataforma Eclipse, como mencionado anteriormente. Isso
permite utilizar os recursos oferecidos pela plataforma de
forma concomitante com a modelagem de SMAs. Dado que
muitas plataformas de agentes são implementadas em Java, tais

como JADE [13], Jadex [14], Jason [15]; o uso da plataforma
Eclipse favorece uma possível geração de código dentro do
mesmo ambiente de desenvolvimento. O projeto da ferramenta
MAS-ML tool, juntamente com os plug-ins gerados
encontram-se disponíveis em https://sites.google.com/site/
uecegessi/masmltool.

IV. ESTUDO DE CASO

O ambiente de aprendizagem Moodle [16] é usado por
instituições de ensino como um ambiente de aprendizagem
colaborativa, facilitando a comunicação entre professor e
aluno, estimulando a troca de informações e compartilhando
recursos via internet. Os diagramas de sequência e atividades
foram criados para cada um dos seis agentes descritos, porém,
devido à questão de espaço, vamos ilustrar neste trabalho
apenas os diagramas para o AgenteBuscadorDeInformacoes. A
Figura 1 ilustra o diagrama de sequência para o
AgenteBuscadorDeInformacoes, que foi modelado como um
agente baseado em objetivo e guiado por plano.

Este agente conta com dois planos pré-definidos: i)
buscarInformacoesPessoas, que tem as ações de
localizarPessoas, relacionarPessoas e
exibirPessoasRelacionadas que são executadas em sequência.
Este plano visa relacionar pessoas no contexto do Moodle para
que as mesmas possam interagir entre si; e ii)
buscarInformacoesDocumentos com as ações
buscarDocumentos, relacionarDocumentos e
exibirDocumentosRelacionados. Este plano visa encontrar
documentos relacionados às pessoas e exibi-los.

Fig. 1. Diagrama de sequência para o AgenteBuscadorDeInformacoes

A Figura 2 ilustra o diagrama de atividades para o plano
buscar informações pessoas do AgenteBuscadorDeInformacoes
descrito no parágrafo anterior. Os demais agentes podem ser
encontrados em https://sites.google.com/site/
uecegessi/masmltool/modelagemdiagramasdinamicosmoodle.

Regra Propósito e Definição em OCL

Regra

1

Todos os elementos do

modelo devem ter um

nome.

name.size() > 0

Regra

2

Se o agente possui plano,

então ele possui ação.

self.ownedPlan->isEmpty() = false

implies self.owendAction->isEmpty()

= false and self.ownedPlan->isEmpty()

= false

Regra

3

Se o agente possui plano,

então não possui

percepção.

self.ownedPlan->isEmpty() = false

implies

self.ownedPerception->isEmpty() =

true and self.ownedPlan->isEmpty() =

false

Regra

4

Se o agente possui

planejamento, então ele

possui percepção e ação.

self.ownedPlanning->isEmpty() = false

implies (self.ownedPerception-

>isEmpty() = false and

self.owendAction->isEmpty() = false)

and self.ownedPlanning->isEmpty() =

false

Regra

5

Se o agente possui plano,

então ele não possui

planejamento.

self.ownedPlan->isEmpty() = false

implies self.ownedPlanning-

>isEmpty() = true and self.ownedPlan-

>isEmpty() = false

Regra

6

Caso o agente possua

planejamento, então ele

não terá plano.

self.ownedPlanning->isEmpty() = false

implies self.ownedPlan->isEmpty() =

true and self.ownedPlanning-

>isEmpty() = false

Lima, Feijó, Nogueira, Gonçalves, Freire and Cortés

138

Fig. 2. Diagrama de Atividade para o plano buscar informações do

AgenteBuscadorDeInformacoes

V. TRABALHOS RELACIONADOS

Ferramentas de modelagem são normalmente projetadas
com foco no suporte a uma linguagem de modelagem
específica, propagando suas vantagens e desvantagens para as
ferramentas que as implementam. Tanto a linguagem AUML
[17] quanto Anote [18] descrevem adequadamente papéis e
suas propriedades. Com isso, as respectivas ferramentas de
suporte não são capazes de modelar tais entidades.

MAS-ML [2] possui duas ferramentas de modelagem para
SMAs. O VisualAgent [19] é baseado no metamodelo original
da MAS-ML, e consequentemente, o suporte à modelagem de
agentes com diferentes arquiteturas internas é limitado.
Adicionalmente, apenas os diagramas estáticos propostos na
linguagem foram contemplados. Por outro lado, MAS-ML tool
[4] [5] é um ambiente de modelagem específico de domínio
que atende à modelagem de sistemas multi-agente por meio da
linguagem de modelagem MAS-ML 2.0 [4] e contempla os
diagramas de classes e organização e papel de acordo com a
versão 2.0 de MAS-ML. Duas vantagens de MAS-ML tool em
relação à VisualAgent podem ser notadas: o fato de ter sido
desenvolvida como um plug-in da plataforma Eclipse [9], e a
capacidade de realizar verificação do modelo em relação ao
metamodelo da MAS-ML. Adicionalmente, a nova versão de
MAS-ML tool possibilita a modelagem de todos os diagramas
estáticos e dinâmicos em conformidade com MAS-ML 2.0.
Entretanto, as demais ferramentas citadas nessa seção não são
capazes de modelar todos os aspectos estáticos e dinâmicos dos
SMAs.

VI. CONCLUSÃO E TRABALHOS FUTUROS

Neste trabalho foi apresentada a evolução da ferramenta
MAS-ML tool para o suporte à modelagem dos diagramas de
sequência e atividades definidos em MAS-ML 2.0. Com isso,
tanto os diagramas estáticos como os dinâmicos previstos na
linguagem podem ser gerados através da ferramenta.
Adicionalmente, a extensão proposta prevê a validação da boa
formação dos diagramas gerados reduzindo falhas e tornando a
modelagem mais coerente com as definições feitas em MAS-
ML 2.0. Como trabalhos futuros relacionados com a evolução

da ferramenta podem ser citados: (i) geração de código a partir
dos diagramas construídos na ferramenta MAS-ML tool e (ii)
realização de um estudo utilizando computação experimental
com um público alvo formado por analistas/projetistas de
sistemas multi-agente.

REFERÊNCIAS

[1] RUSSELL, S.; NORVIG, P. Inteligência artificial: uma abordagem moderna,
2ª Ed. Prentice-Hall: São Paulo, 2004.

[2] SILVA, V. T. Uma linguagem de modelagem para sistemas multi-agente
baseada em um framework conceitual para agentes e objetos, Tese de
doutorado. Rio de Janeiro: PUC, Departamento de Informática, 2004.

[3] SILVA, V. T.; CHOREN, R.; LUCENA, C. J. P. MAS-ML: A Multi-Agent
System Modeling Language, In: Conference on Object-oriented
programming, systems, languages, and applications, 18th annual ACM
SIGPLAN; USA, ACM Press, 2007.

[4] GONÇALVES, E. J. T. (2009). Modelagem de Arquiteturas Internas de
Agentes de Software Utilizando a Linguagem MAS-ML 2.0. Dissertação de
Mestrado. Fortaleza: UECE, Centro de Ciência e Tecnologia.

[5] GONÇALVES, E. J. T.; OLIVEIRA, K. S. F.; CORTÉS, M. I.; FEIJÓ, A.
R.; OLIVEIRA, F. R.; SILVA, V. T. MAS-ML TOOL: A Modeling
Environment for Multi-Agent Systems. In: Proceedings of 13th International
Conference on Enterprise Information Systems, Beijing 2011.

[6] UML, Unified Modeling Language Specification, versão 2.2, disponível
em:<http://www.uml.org>, acessado em 2 de Junho de 2011.

[7] SILVA, V.; Garcia, A.; Brandao, A.; Chavez, C.; Lucena, C.; Alencar, P.
(2003). Taming Agents and Objects in Software Engineering. In: Garcia, A.;
Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J. (Eds.), Software
Engineering for Large-Scale Multi-Agent Systems, Springer-Verlag, LNCS
2603, pp. 1-26, 2003.

[8] FARIAS, K.; NUNES, I.; SILVA, V. T.; LUCENA, C. J. P. MAS-ML Tool:
Um ambiente de modelagem de sistemas multi-agente, Fifth Workshop on
Software Engineering for Agent-oriented Systems (SEAS@SBES 09),
Brazil, 2009.

[9] ECLIPSE, Eclipse Platform, disponível em:<http:// www.eclipse.org>,
acessado em 2 de Junho de 2011.

[10] GMF, disponível em:<http://www.eclipse.org/modeling/gmf/>, acessado em
Junho de 2011.

[11] EuGENia disponível em:<http://www.eclipse.org/epsilon//>, acessado em
Junho de 2011.

[12] OCL,disponível em :<http://www.eclipse.org/modeling/mdt/?project=ocl>,
acessado em 20 de Junho de 2011.

[13] BELLIFEMINE, F. L.; CAIRE, G.; GREENWOOD, D. (2007). Developing
Multi-Agent Systems with JADE. [S.l.]: Wiley (Wiley Series in Agent
Technology).

[14] POKAHR, A.; BRAUBACH, L.; LAMERSDORF, W. (2003). Jadex:
Implementing a BDI-Infrastructure for JADE Agents. EXP - In Search of
Innovation (Special Issue on JADE), vol. 3, no. 3 , Telecom Italia Lab, Turin,
Italy, S. 76-85.

[15] BORDINI, R. H.; WOOLDRIDGE, M.; HÜBNER, J. F. (2007).
Programming Multi-Agent Systems in AgentSpeak using Jason, John Wiley
& Sons.

[16] MOODLE, disponível em:<http://www.moodle.org.br>, acessado em Junho
de 2011.

[17] ODELL, J.; PARUNAK, H. V. D.; BAUER, B. (2000). Extending UML for
Agents. Proc. Of the Agent-Oriented. Information Systems Workshop
(AOIS’00) at the 17th National Conference on Artificial Intelligence
(AIII’00) (3-17).

[18] CHOREN, R., LUCENA, C. Agent-Oriented Modeling Using ANote, 3rd
International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, 3rd; The Institution of Electrical Engineers, IEE, Stevenage,
UK, 2004, pp. 74-80, 2004

[19] DE MARIA, B. A.; SILVA, V. T.; LUCENA, C. J. P.; CHOREN, R.
VisualAgent: A software development environment for multi-agent systems,
Proceedings of the 19º Simpósio Brasileiro de Engenharia de Software, Tool
Track, Brazil, 2005.

Dynamic Modeling of Multi-Agent Systems Using MAS-ML Tool

139

Two Different Perspectives about How to Specify
and Implement Multiagent Systems

André Mendes da Rosa, Alexander Gularte, Eder Mateus Nunes Gonçalves, Mateus Jung
Universidade Federal do Rio Grande - FURG

Rio Grande-RS, Brazil 96203-900
Email:seteeng@gmail.com, alexgularte@gmail.com, edergoncalves@furg.br, mateus jung@furg.br

Abstract—This article review has as a goal to demonstrate
that exists two different perspectives considering the actual
literature about frameworks to specify and implement multi-
agent systems in a formal way. On the one hand, there are
those specific frameworks/methodologies for MAS where those
obligatory requirements to guarantee the system correctness are
encapsulated on the tool. On the other hand, there are those
frameworks/methodologies that are based on those existing one
and they are adapted to the multi-agent specificities, where
those mechanisms to verify and validate the system are inherited
from the original method/tool. On this paper are presented two
methodologies based on the first perspective, considering three
different dimensions on specifying MAS, and two adapted tool,
Petri Nets and AUML, considering the second perspective.

I. INTRODUCTION

Modern computational problems are inherently distributed.
In these cases, a solution can be obtained through some kind
of composition between parts dispersed in a real or virtual
environment. A example like these is the recomposition of an
electrical network after a blackout, and the control of a team
of robots that play soccer. Problems like these share some
pattern features [1]: they are physically and/or conceptually
distributed, in the sense that their global state is composed
by the aggregation of partially independent local states; and
the tasks involved in solving these problems refer to different
levels of abstraction, varying from global coordination pro-
tocols to local perception/action procedures, that use sensors
to perceive the world state and effectors to act in the world.
The relevance of these problems can be measured through the
number of new methods/techniques or even new knowledge
areas developed to treat them. It can be cited Pervasive and
Ubiquitous Computing, Smart Grids and Multiagent Systems.
All these issues has its fundamental knowledge based on the
distributed systems theory.

One main reason for this situation is the absence of some
pattern method/technique to develop this kind of solution. In
this sense, it is necessary to establish some benchmarks about
formal methods of specification to MAS. According to this
study, it can be said about MAS:

• a MAS can be conceived from three dimensions:
the agent itself, the communication/interaction aspects
(environment and agents) and the organization model;

• The existing formal methods can be classified on two
categories: those methods that was develop specifi-
cally as a multi-agent framework and has its own tools
to verify and validate the system based on some kind
of logic proof.

From this perspective, this paper has as a goal to define the
minimal constraints about a formal method to specify, develop
and implement MAS.

II. REQUIREMENTS FOR A MULTIAGENT SPECIFICATION

A specification is formal if it is expressed in a language
composed of the following three elements: rules for deter-
mining the correct formation of sentences (syntax); rules for
interpreting sentences in a precise and meaningful regarding
the considered domain (semantics), and rules to infer useful
information from specifications (the proof theory). In a broad
context, can be identified some metrics for evaluation of
formalisms:

• Expressiveness and required coding - Expressiveness
relates to the ability of the model to express formal
aspects present in the real system;

• Constructability, management and evolution - The
constructability is a ability to adapt to a system with
modularized and incremental development processes;

• Usability - The usability concerns the ease with which
the specification is performed;

• Communicability - Along the same idea of the previ-
ous criterion, the communicability allows well-trained
people read and verify high quality specifications.

A multi-agent formalism should take into account three
basic steps in their specification: requirements, design and
implementation. In order to go from one step to another are
necessary rules or propositions, i.e., a logical-mathematical
formalism that enables the correlations the three stages.

III. LOGIC-BASED FORMALISM FOR MAS

In a MAS, there are three dimensions to consider:

• the individual agents, where the agent is able to sense
changes in the environment, act according to its goals
causing changes in the environment, communicate to
coordinate your actions with other agents;

• the communication and interaction between agents,
in other words, this dimension can be understood as
protocols regulating the interactions between agents,
enabling agents to use the functionality of others or
allowing it access to external resources;

• the social organization carry out the agents repre-
sentation such individuals inside a group organized

Two Different Perspectives about How to Specify and Implement Multiagent Systems

141

by concepts like roles, groups, norms and global and
individual plans/missions.

Each of the two methods/formalisms/frameworks presented
below represents some of these three dimensions.

A. Model of Organization for multI-agent SystEms+

The organizational specification of a MAS is useful to
improve the efficiency of the system since the organization
constrains the agents behaviors towards those that are socially
intended: their global common purpose [2].

The MOISE+ has an explicit global plan and little depen-
dency between the structure and functioning. The objective is
an organization centered model where the first two dimensions
can be specified almost independently of each other and after
properly linked by the deontic dimension.

The organizational models that follow the organizational
centered point of view usually are composed by two core
notions: an Organizational Specification and an Organizational
Entity. An Organization Entity is a population of agents
functioning under an Organization Specification [3]. An Or-
ganization Entity is then created as the agents adopt the roles
specified in the organization Specification.

A MOISE+ Organizational Specification is formed by
a Structural Specification, a Functional Specification, and a
Deontic Specification [3]. The three organizational dimensions
of MOISE+ [4]:

• Structural Dimension (roles, groups, relations): A role
is conceived as a set of behavioral constraints that an
agent accepts since it joins a group in the organization;

• Functional Dimension (goals, global plans, missions):
It defines a set of global plans for the MAS, which are
structured in a social schema, as a goal decomposition
tree, where each goal may be decomposed in sub-
goals, and the responsibilities for the sub-goals are
distributed in missions;

• Deontic Dimension (obligations, permissions): It spec-
ifies the relations between the structural specification
and the functional specification, establishing which
missions each role is obliged or has the permission
to realize.

Through the levels shown, note that the MOISE+ may
represent a real organization, showing a good degree of ex-
pressiveness. It has good evolution because the concepts of
missions, set of plans and goals where all this concepts are
assembled in a Social Scheme, thus, also has good usability,
mainly by tree decomposition distributing the responsabilities
in missions.

B. Social Commitments

Most agent communication languages are no longer defined
in terms of the agents’ mental attitudes, but in terms of social
commitments [5]. However, commitments has not a clear and
unequivocal character, and are not completely unrelated to the
agent’s reasoning, but this situation can be remedied through
the combination of logic BDI with a logic of what is publicly
grounded between agents.

By means of a reducionist logical characterization of social
commitments, and due that individual mental attitudes are
not enough to characterize social commitments, it should
be combined a logic of individual mental attitudes with a
logic accounting for the social and public feature of social
commitments. Using the logic of grounding which extends
a BDI-like logic by a modal operator of what is publicly
established in a group of agents, as opposed to private mental
attitudes.

Castelfranchi reduces social commitment of the debtor i to
the creditor j w.r.t. the action α using mutual knowledge: ”i
and j mutually know that i intends to do α and this is j’s goal,
and that as for α j has specific rights on i (j is entitled by i
to α)” [6] [5]. Replacing mutual knowledge with the notion of
grounding, captures only the public feature of the i’s intention,
and also does not imply that this attitude holds.

Due to the combination of the BDI logic with a logic
of what is public grounded between agents, the expressive-
ness is good, but is affected by the notion that commitment
does not have a clear and unambiguous characterization. The
constructability can be achieved through the theory of speech
acts, formalizing commitments not only as effects of speech
acts, but speech acts creating and managing commitments.
The specification for presenting the logic grounding, modal
operators and other special features, such as propositional so-
cial commitments still has low usability. In the communication
part, it can be said that social commitments are more mature,
however, must be well understood by well-trained people.

IV. INHERITED FORMALISM FOR MULTIAGENT SYSTEMS

This section describes two formalisms inherited from clas-
sic models of system specification: UML and Petri Nets.

A. Agent Unified Modeling Language (AUML)

MAS are often characterized as an extension of object-
oriented systems, but unlike objects, agents are autonomous
and interactive. Agents based on their internal states, its
activities include goals and conditions that guide the execution
of defined tasks. While objects require external control to
execute its methods, agents know the conditions and the effects
of their actions.

Participants of the FIPA Modeling Technical Committee
and OMG-AUML Agent Work Group initially identified two
areas for development of detailed specifications. These speci-
fications are as follows: Class Diagrams - specify the internal
behavior of an agent and relating it to the external behavior of
an agent using and extending UML class diagrams; Interaction
Diagrams - a generic term that applies to several types of
diagrams that emphasize object interactions. These include
collaboration diagrams, sequence diagrams, and the overview
diagram of interaction.

According to FIPA Modeling Technical Committee, the
areas of AUML Modeling are [7]: Multiagent vs. single
agent, Goal and soft goals, Social aspects, Environment, Work-
flow/Planning, Levels of abstraction, Temporal constraints, and
Deployment and Mobility.

We note that the AUML with its graphical notation, their
extensions and adaptations is able to express and model the

Rosa, Gularte, Gonçalves and Jung

142

various MAS, leaving the designer of such systems better able
to lift requirements, design, build and implement, namely, has
usability. And, through the various UML notations adapted one
can have an overview of the system, i.e. the AUML shows a
good degree of expressiveness, and has high constructability
and it can be, in most situations, codified in a way more agile.

B. Petri Nets based Formalism for Multiagent Systems

The specification language is based on PN for structuring
knowledge in various abstract levels and also provides generic
mechanisms for use of several types of knowledge representa-
tion formalisms.

This model assumes that the agent, based on their mental
model of the world, establishing priorities and setting goals for
your performance environment, and to establish these goals,
the agent has the job of identifying the best sequence and
coordination of actions to achieve them.

The planning is directly linked to socialization, namely the
role of the agent seeks to achieve the aims of agents society of
which he is part. This model is modular, and from the planning
module are defines the current goals of the agent that are
passed on to the coordination module that selects the necessary
actions to the module action can act on the environment.

The individual knowledge and the role that the agent has
in society defines its personal strategy and together with the
collective strategy of the society of agents, the agent performs
their individual actions on behalf of social goal.

[1] proposed an approach to specify individual and social
levels through the same formalism. This formalism is based
on a specific model of High Level PN developed to interface
between experienced professionals in the domain to be mod-
eled and frameworks used to implement the system. Moreover,
the proposed PN allows you to create and verify formally
the mapping between individual and social levels through a
hierarchical formalism that integrates the knowledge of the
entire system.

The proposed model presents important aspects in the
process of acquiring knowledge:

• The graphical representation allows minimizing com-
munication problems between knowledge engineers
and professionals in the area concerned. The model
allows specifying concurrent tasks, as well as individ-
ual and social contexts;

• The mathematical model of PN can be used to check
for problems such as inconsistencies, ambiguities and
redundancies;

• It is possible to automatically transform the informa-
tion in a knowledge base.

The use of PN is justified because it is a specification
tool ideal for systems that require specifying competition
and timing. In addition, knowledge based systems, as is the
case with MAS, can be viewed as discrete event systems
because changes state, or the occurrences of new events are
driven by time. Aiming to represent a knowledge-based system
using PN, it becomes necessary to extend the capability of
representativeness tokens allowing manipulations represent the

knowledge base when a rule is triggered. To meet this purpose,
High Level PN are appropriate. This type of network allows
associating preconditions and post-conditions that control the
loading and firing of transitions. The transition firing entails
a change in the knowledge base, which is updated by the
manipulation of the chips. The distribution of tokens represents
the state of the knowledge base.

V. CONCLUSION

In this paper is argued that the formalism to specify,
implement and validate MAS can be classified on those that are
specific for this kind of paradigm and those that are inherited
from other methods. In this sense, four different methods
were analysed considering some basic metrics for this kind
of formalization.

The difference between AUML and the representation by
PN seems to revolve around the adaptability of AUML, which
can be shaped by the designer of the MAS in the way most
suitable to represent the MAS in question, beyond AUML
have a friendly graphical view system that makes coding more
agile and simple, without forgetting, of course, that AUML can
represent a wider variety of MAS.

Visually, PN and Moise are similar. Both transmit on its
behalf, a great knowledge about the system as a whole. But
Moise is very limited to such representation, once it only
models the system, defining the rules of operation, structure
and organization of MAS. PN go beyond, allowing the de-
velopment of execution control, the system working at the
individual level and global.

The main fact concluded from this work is the totally
absence of frameworks/methodologies and even languages
which encompass all dimensions of a MAS.

REFERENCES

[1] E. M. N. Gonçalves, “Specifying knowledge in cognitive multiagent
systems using a class of hierarchical petri nets,” Journal of Software,
vol. 7, no. 11, pp. 2405 – 2414, 2012, special Issue: Data and Knowledge
Engineering in Open Social Network.

[2] L. Gasser, “Organizations in multi-agent systems,” Pre-Proceeding of the
10th European Worshop on Modeling Autonomous Agents in a Multi-
Agent World (MAAMAW’2001), Annecy, 2001.

[3] J. F. Hübner, J. S. Sichman, and O. Boissier, “A model for the structural,
functional, and deontic specification of organizations in multiagent
systems,” Advances in Artificial Intelligence, pp. 439–448, 2002.

[4] A. Hübner, G. Dimuro, A. Costa, and V. Mattos, “A dialogic dimension
for the moise+ organizational model,” in Proceedings of the Workshop
on LAnguages, methodologies and Development tools for multi-agent
systemS (LADS 2010) at The Multi-Agent Logics, Languages, and
Organisations Federated Workshops (MALLOW 2010), Lyon, 2010.

[5] B. Gaudou, A. Herzig, D. Longin, and H. Noi, “Logical formalization of
social commitments: Application to agent communication languages,”
in Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems. Budapest: International Foundation for
Autonomous Agents and Multiagent Systems. Citeseer, 2009, pp. 1293–
1294.

[6] C. Castelfranchi, “Commitments: From individual intentions to groups
and organizations,” in Proceedings of the First International Conference
on Multi-Agent Systems (ICMAS-95), 1995, pp. 41–48.

[7] J. Odell, H. V. D. Parunak, and B. Bauer, “Extending uml for agents,”
in Proceedings of the Agent-Oriented Information Systems Workshop at
the 17th National Conference on Artificial Intelligence, 2000.

Two Different Perspectives about How to Specify and Implement Multiagent Systems

143

Multiagent Systems in Travel Planning

Diego Fialho Rodrigues∗, Heber Amaral∗, Alcione de Paiva Oliveira∗ and Simone Dornelas Costa†

∗Departamento de Informática
Universidade Federal de Viçosa - UFV

Viçosa, MG - Brazil
diego.fialho@ufv.br, heberfa@gmail.com, alcione@dpi.ufv.br

†Departamento de Computação
Universidade Federal do Espı́rito Santo - UFES

Alegre, ES - Brazil
sidornellas@gmail.com

Abstract—Currently, as a result of globalization and other
factors, the tourism market has remained high. Assisting the
customer in order to satisfy their desires and constraints is a
major challenge in this sector. This paper presents an agent-based
system for developing a travel plan. In the system, according to
the preferences informed by tourists, several agents cooperate in
order to construct the travel plan that best suits the client needs. A
tourism domain ontology was developed to enable communication
between the agents. The system relies on the assistance of the
greedy algorithm to trace the routes. A heuristic function was
designed to ensure the fulfillment of the customer goals.

Keywords—multiagent; ontology; Travel Planning

I. INTRODUCTION

It’s known that building a travel packet that satisfies the
majority of desires and constraints of the clients is a tough
task. There are several decisions to be taken and restrictions to
be satisfied such as: displacements, schedules, time and cost
constraints, accommodation restrictions, tourist attractions to
be visited, etc. Therefore, a growing interest for automated sys-
tems that supports travel packets construction can be noticed
nowadays. The agent-based systems approach can be helpful
in this domain due to its characteristics: many autonomous
agents (representatives from airlines, hotels, bus companies,
tourist attractions) with their own goals interact to build a
travel plan. To implement such a system is necessary to first
establish a common vocabulary, using a lightweight ontology,
so that agents can communicate. It is then necessary to design
agents, the roles to be played and the interaction between
agents in order to produce a travel plan that meets the users
needs. This paper presents a Multiagent system (MAS) [1] for
the travel planning problem. A tourism domain ontology was
developed to enable communication between the agents. The
system relies on the assistance of the greedy algorithm to trace
the routes and the information required for the plan creation
is located in a relational database. A heuristic function was
designed to ensure the fulfillment of the customer goals. As
related work, Lopez and Bustos [2] used a multiagent systems
based on mobile devices to build a trip plan for a specific date.
Schiafino and Amandi [3], presented an expert system, named
Traveller, used for user assistance in solving travel problems.

II. PROBLEM DESCRIPTION

The problem to be addressed lies in the travel planning
domain and the solution presented can be used to assist travel
agencies. The problem consists in the construction of a travel
plan that best satisfies the client needs, considering not only
particular restrictions of the travel packet problem, but also
clients constraints, like: time, money, preferences, and so on.
The MAS approach is proposed in order to treat such a
problem. The agents play roles in the system and interact in
a collaborative way inside the environment. Each agent has
its particular goals and the union of all agents’ goals together
reaches efficiently the general goal of building a travel packet.
The Table I presents the roles in the system.

It is important to notice that each agent has an individual
goal, which is related with the role played. The behavior of all
agents and all their interactions, both with the environment and
between the agents, shape the general behavior of the system.

The problem has some constraints that must be taken into
account during the travel plan construction:

• The planning must fit in a time range (minimum and
maximum date).

• There must be a minimum and a maximum number
of cities to be visited.

• The travel time must be minimized.

• There must be a threshold cost.

• The travel must start in and return to the same place
inside a period of time.

TABLE I. ROLES OCCURRING IN THE SYSTEM

Role Description

Planner Agent
It is the agent responsible for the development of the sequence

of steps that make up the travel plan.

Tourist Agent The agent that asks for the travel plan creation.

Travel Agent
The agent responsible for informing means of transport,

accommodations, and interesting places to be visited.

Other Agents
Agents that represent airlines,

bus companies, hostels, etc. These agents are responsible
for informing prices, places available, and travel time.

Multiagent Systems in Travel Planning

145

• One city must not be visited more than once, except
in the case it is used to return to another city.

• A person can visit the same kind of tourist attraction,
in one or more cities, but not the same tourist attrac-
tion.

III. THE SYSTEM

To model the requirements of this project Tropos method-
ology [4] was used to help improve understanding of roles
and goals of each agent. The main agents of the system
are: Planner, Tourist, Travel, Transport, Events Promoter and
Lodging.

The Tourist agent depends on the Travel agent to achieve
the following objectives: (a) Perform Travel, (b) Cost Lim-
ited, (c) Limited Time, and (d) Minimum Transit Time. The
objective (b) is related to financial constraints of the Tourist
agent. The goal (c) is related to the time available to the Tourist
agent to make the trip. The objective (d) is related to the Tourist
agent desire to spend as little time as possible on transportation
vehicles.

The Tourist agent also has a soft-goal, i.e., a goal that is
important to be reached but it is not top priority, namely: Enjoy
the Journey. This agent requires the asset: travel plan, which
will be assembled by the Planner agent.

The Travel Agent is the only agent that communicates with
all other agents to get the following information from them: (a)
Tourist agent preferences, (b) Transportation, (c) Attractions,
and (d) Lodging. The Travel Agent needs this information to
achieve its goal Sell Travel Package. This agent has as soft-
goal to Attend well Tourist agent. It also has the task: Assemble
Travel Plan.

The Planner agent needs several resources, which are
available for this agent by communicating with the Travel
agent, namely: (a) Tourist agent preferences, (b) Lodging, (c)
Transportation, (d) Pre-defined Plan from Tourism agent, (e)
initial City, and (f) Attractions.

The agents Transport, Lodging and Event Promoter are
only responsible for providing the resources: Transportation,
Lodging and Attraction, respectively, for the Travel agent. Fig.
1 shows through an use case diagram the actors and their
functional dependencies.

In order to enable communication between the agents
was necessary to develop an ontology for the travel domain.
Although the ontology was created using OWL tools, it was
stored as relational database due to its capabilities for fast
retrieval of the data. This was an important feature as there
were a great deal of instances (cities, attractions an hotels) to
stores and manipulate. Fig. 2 shows the database schema used
to store the ontology instances.

Most of the classes are self-explained. The class Attribute
has a single property name, which stores the description of
the attribute including it in a theme or a facet of the related
classes. The attributes have many-to-many: with classes: Acco-
modation, Attraction, Event. For instance: (a) a rock concert,
which is an event, can have the attribute “music” among
others; (b) a resort have rooms that can have the attribute
“whirlpool”. The Accomodation class store information for

Fig. 1. System use case diagram.

inns, hotels and hostels. The property kind stores the type
of accommodation. The Transportation Class represents the
various means of transportation such as: bus, plane, ship, etc.
The routes are specified from the Link class. Each route has
the city of origin, destination, and a means of transportation.
The associated class LinkHasTransportation specify the price
and travel time between the cities for a particular mode of
transport. These properties are important for assembling the
travel plan.

A. The Planning Algorithm

In this work we adopted a greedy search for the assembly
of the trip itinerary. In the greedy method decisions are
made in an isolated way and in every step its decision is
based on a heuristic function. The purpose of this function
is to guide the greedy algorithm in the search for the most
interesting attractions, i.e. those that meet the highest amount
of desires and constraints of the tourists. Thus, we specified the

Fig. 2. The database schema.

Rodrigues, Amaral, Costa and Oliveira

146

criteria that influence, positively and negatively in the decision
to participate in one attraction, namely: (a) the number of
attributes that match the tourists preferences (b) the attraction
cost, and this comprises the attraction cost plus lodging (it
depends on the number of stay days), (c) the transportation
cost, (d) and the transportation time to the city of the attraction.
This is expressed the following function:

f(a) = n(a) ∗ k1 (1)
−(c(a) + cl(a) ∗ s(ca)) ∗ k2
−(tt(ca) ∗ ct(ca) ∗ k3)

Where: a denotes the attraction; ca stands for the city of the
attraction; f(a) is the heuristic value of the attraction; n(a) is
the number of attributes satisfied by the attraction; c(a) is the
cost of the attraction (ticket and other costs of the attraction);
cl(a) is the cost of accommodation in the city of the attraction;
s(ca) is the number of days staying in the city of the attraction;
tt(ca) is the time spent traveling to the city of the attraction;
ct(ca) is the cost of traveling to the city of the attraction; k1,
k2 and k3, are constant for adjustment of the equation. The
great weight of the portion (tt(ca)∗ ct(ca)∗k3) aims to make
the algorithm select attractions in cities located close to each
other. The algorithm also takes into account the financial cost
of the return to hometown (co). The algorithm has addressed
these constraints through the function r(co) (cost of returning
to co):

r(co) = (c(a) + cl(a) ∗ s(ca))− (cv(co, c)) (2)

Where: co denotes the hometown; cv(co, c) is the cost of
returning hometown from the attractions’ city. The value of
r(co) must always be more than 0.

IV. RESULTS

Fig. 3 shows the output generated by the system for a
simulation where the client requests a travel itinerary for a
tourist region well known in Brazil, called “Serras Gauchas”.

V. CONCLUSIONS

This paper presented a MAS in order to assemble tour
packages according to the preferences and limitations of the
tourists. In the MAS agents were used to search for information
such as: accommodation, attractions, events, cities, transport,
etc. A specific planner agent was used to assemble the travel
plan from the information provided by other agents.

The greedy algorithm was used to assist in the assembly
of the travel plan. The choice of cities was done in an iterative
manner, being influenced by criteria: (a) positive: attributes of
tourist interest, and (b) negative: cost and travel time to the
next town. Because of this, it can be observed that the choice
of cities have a behavior prone to formation of clusters, i.e.
where it tends to group cities relatively close if they meet the
interests of the visitor. The solution proved to be feasible in the
tests with a small number of cities. Tests with larger number
of cities need to be done.

Fig. 3. Itinerary generated for “Serras Gauchas”.

As future work it would be interesting to use Internet to
assemble tour packages. So it could seek the route information
as distance, travel time between cities, etc., using Google Maps
for instance. It would be interesting also to evaluate other
search algorithms such as A*, which has the property to obtain
optimal solutions for admissible heuristics. The system could
also use a database of small pre-built routes to be dynamically
joined.

ACKNOWLEDGMENT

This work is financed by funding agencies FAPEMIG,
CNPq, FUNARBE and by the Gapso Company.

REFERENCES

[1] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley &
Sons Inc, 2002.

[2] J. S. Lopez and F. A. Bustos, “Multiagent tourism system: An agent
application on the tourism industry,” in Proceedings of the International
Joint Conference IBERAMIA/SBIA/SBR, Brazil, 2006.

[3] S. Schiafino and A. Amandi, “Building an expert travel agent as a
software agent,” Expert Systems with Applications, vol. 36, pp. 1291–
1299, 2009.

[4] P. Bresciani, P. Giordini, F. Giunchiglia, J. Mylopoulos, and A. Perini,
“Tropos: An agent oriented software development methodology,” Journal
of of Autonomous Agents and MultiAgent Systems, vol. 8, no. 3, pp. 203–
236, May 2004.

Multiagent Systems in Travel Planning

147

Towards a fault model for BDI agents: an initial

study

Francisco J. P.Cunha, Elder Cirilo, Carlos Lucena

Laboratório de Engenharia de Software

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Brasil

{fcunha,ecirilo,lucena}@inf.puc-rio.br

Abstract—Given the growing approaches based on the

paradigm of multi-agent systems and hence the need to maintain

the quality of the software produced, testing becomes an activity

of a great importance. For the agent-oriented projects in the BDI

architecture is not different. Thus, it is necessary for testing

agents to have a suitable fault model that ensure the correctness

of the proposed behavior. In this paper, we propose an initial

analysis of a fault model. The structure of plans and goals of the

agents is transformed into a sequence of actions in order to allow

its verification and execution control.

Keywords— fault model, tests in BDI agents, testability agents;

I. INTRODUÇÃO

Soluções de software baseadas em sistemas multi agentes
são cada vez mais utilizadas. Agentes tem a capacidade de
raciocinar usando a cooperação com outros agentes para
alcançar metas estabelecidas [3]. Assim como nos paradigmas
tradicionais de desenvolvimento, há a necessidade de garantir
robustez e corretude, o que se dá através de testes [1]. Uma
observação importante é que, testes em sistemas multi agentes
não é uma tarefa trivial se comparada a sistemas tradicionais.

 A proposta desse trabalho é realizar um estudo inicial
sobre a testabilidade em sistemas de agentes BDI, identificando
as características relevantes para elaboração de um modelo de
falhas. Assim, analisamos quantitativamente a execução de um
agente. No que segue, uma introdução da arquitetura BDI é
apresentada na seção 2, na seção 3 é apresentado o
mapeamento dos agentes para uma árvore de planos e metas e
na seção 4 é analisada quantitativamente a execução. A
conclusão é apresentada na seção 5.

II. BACKGROUND – ARQUITETURA BDI

Uma arquitetura de sucesso para desenvolver agentes
deliberativos é o modelo BDI (Belief, Desire e Intention). [7]
desenvolveu uma teoria de raciocínio prático humano que
descreve o comportamento de maneira racional pelas noções de
“Crenças”, “Desejos” e “Intenções”. A implementação do
presente modelo substitui os dois últimos conceitos pelos
conceitos de “metas” e “planos”. Contudo, meta não é um
conceito chave em sistemas BDI uma vez que são modeladas
como eventos. Assim, estabelecer uma meta, corresponde a
selecionar e executar um plano que possa manipular esse
evento [5]. No restande deste trabalho consideramos os planos
como manipulação de eventos [2]. Um plano é constituído por

três partes: um evento padrão especificando o que é relevante,
uma condição de contexto indicando em que situações o plano
pode ser usado, e o corpo do plano [2].

Um ciclo de execução BDI é uma sequência como a
descrita abaixo: (i) um evento ocorre; (ii) o agente determina
um conjunto de instâncias de planos cujos eventos padrão
correspondem ao evento gerador; (iii) o agente avalia as
condições de contexto dos planos relevantes para gerar o
conjunto de instâncias aplicáveis dos planos; (iv) uma das
instâncias aplicáveis do plano é selecionada e executada; (v) se
o corpo plano falhar, então um mecanismo de manipulação de
falhas é acionado.

Este ciclo gera uma trilha de operações que compreende a
sequência de ações com tentativas de execução e um indicador
de sucesso ou fracasso. Existem algumas abordagens para lidar
com o fracasso. Talvez a abordagem mais comum, e que é
utilizada em diversas plataformas BDI existentes é a de
selecionar um plano alternativo aplicável, e considerar apenas
um evento como tendo falhado, quando não existem planos
aplicáveis restantes. Ao determinar planos alternativos pode-se
considerar o conjunto de planos aplicáveis existentes ou
recalcular o conjunto de planos aplicáveis uma vez que a
situação pode ter mudado desde que os planos foram
determinados. Algumas plataformas BDI usam como
tratamento de falhas, repetir os planos em caso de falha [2].

III. EXECUÇÃO BDI COMO ÁRVORE DE PLANOS E METAS

A execução de um agente BDI é um processo dinâmico que
executa ações progressivamente. Na análise deste processo e,
para torná-lo numa forma declarativa, aplicamos uma
transformação de maneira que o comportamento do agente seja
mapeado em uma árvore de planos e metas e que seja
executado como uma sequência de ações. Os planos e metas
podem ser visualizados como uma árvore onde cada meta tem
como filhos os planos que lhes são aplicáveis e cada plano tem
como filhos os seus subplanos [2]. Trata-se de um tipo de
árvore “e/ou” onde cada meta é realizada por um dos seus
planos (“ou”) e cada plano precisa de todos os seus subplanos
para ser alcançado (“e”) [3]. A escolha do plano para cada meta
na árvore não é um processo determinista. Além disso, ao
considerar uma falha, precisa-se saber o que fazer para
recuperação. Inicialmente, uma árvore de planos e metas é
representada como um termo em Prolog seguindo uma
gramática simples [3]. GPT é a abreviação de “Goal-Plan

Towards a fault model for BDI agents: an initial study

149

Tree”, AoGL é a abreviação de “Action or Goal List”, e A é
um símbolo.

Fig. 1 Uma gramática para transformação da árvore de planos e metas [2]

Como um exemplo, retirado do trabalho de Winikoff et al.
[2], uma meta com dois planos aplicáveis, cada um contendo
uma única ação, é representado pelo termo: goal ([plan ([act
(a)]), plan ([act (b)])]). Um predicado não determinista exec é
definido onde seu primeiro argumento (entrada) é a árvore de
planos e metas e o segundo argumento (saída) é uma sequência
de ações. Consideremos que a árvore de planos e metas
contenha somente instâncias de planos aplicáveis. Assim, para
transformar um “nó meta” em uma sequência de ações,
selecionamos uma de suas instâncias aplicáveis do plano. O
plano selecionado é transformado em uma sequência de ações
(linha 2). Quaisquer uns dos planos aplicáveis podem ser
escolhidos e não apenas o primeiro. Se o plano selecionado é
executado com sucesso então o resultado do trace é uma
sequência de ações para a execução de uma meta (linha 3).
Caso contrário, é executada a recuperação de falhas (linha 10),
que é feita tomando os planos restantes, ou seja, excluindo o
plano que já foi tentado. A sequência de ações resultantes é
anexada à sequência de ações do plano de falha para obter uma
sequência completa de ação para o objetivo. Especificamente,
um plano aplicável é selecionado e executado, e se for bem
sucedido, então a execução para. Se não for bem sucedido,
então um plano alternativo é selecionado e a execução
continua, ou seja, as sequências de ações são anexadas.

Fig. 2 Mapeamento da árvore de planos e metas em uma sequência de ações [2]

IV. COMPORTAMENTO DOS AGENTES BDI

É importante considerar o número de possibilidades de
comportamentos existentes para um agente BDI que está
tentando atingir uma meta. Usando o mapeamento anterior,
vemos a execução de um agente BDI como a transformação de
uma árvore de planos e metas para uma sequência de ações.
Assim, a respeito do número de possibilidades para o
comportamento de agentes BDI, derivam fórmulas que
permitem calcular o número de comportamentos, de sucesso e
fracasso para uma determinada árvore de planos e metas [3].
Assumindo que, todas as subárvores de um nó plano ou meta
têm a mesma estrutura podemos definir a profundidade de uma
árvore de planos e metas como o número de níveis de “nós-
meta” que ele contém. Uma árvore de profundidade igual a 0 é

um plano sem submetas, enquanto que uma árvore com
profundidade d > 0 ou é um nó plano com filhos que são nós-
meta de profundidade d, ou um nó meta com filhos que são
planos em profundidade d - 1. Assumimos que todos os planos
de profundidade d > 0 têm k submetas e que todas as metas têm
j instâncias aplicáveis do plano. Este pode ser o caso de cada
meta ter j planos relevantes, cada qual resultando em
exatamente um plano aplicável, mas também pode ser o caso
de outras formas, por exemplo, uma meta pode ter 2 planos
relevantes, metade dos quais são aplicáveis na situação atual.

A seguinte terminologia foi utilizada nas seções abaixo: (i)
pressupomos que a estrutura da subárvore com raiz em um nó
plano ou meta é determinada unicamente por sua profundidade
e, portanto, podemos denotar uma meta ou plano em
profundidade d como gd ou pd, respectivamente; (ii) usamos
n(xd) para identificar o número de caminhos de execução bem
sucedida de uma árvore de profundidade d e com raiz em x;
(iii) analogamente, usamos n(xd) para denotar o número de
caminhos de execução mal sucedidas de uma árvore de
profundidade d com raiz x; (iv) estendemos a notação para as
sequências x1;...;xn onde cada xi é uma meta ou ação e “;”
denota uma composição sequencial. Abreviamos a sequência
de n ocorrências de x por x

n
.

A. Caso Base: Comportamento com execuções de sucesso

Iniciamos o processo calculando o número de caminhos
bem sucedidos na árvore de planos e metas na ausência de
falhas [6]. O número de caminhos possíveis para a alcançar
uma meta é a soma do número de caminhos em que seus filhos
podem ser alcançados. Por outro lado, o número de caminhos
para se alcançar um plano é o produto do número de maneiras
em que os seus filhos podem ser alcançados [2]. Sendo uma
árvore com raiz g, assumimos que cada um dos seus j filhos
podem ser alcançados de n diferentes maneiras, então, ao
selecionar um dos filhos o número de maneiras na qual g pode
ser alcançado é jn. Da mesma forma, para uma árvore com raiz
p (“plan”), assumimos que cada um dos seus filhos k filhos
podem ser alcançados de n maneiras diferentes, então, ao
executar todos os seus filhos, o número de maneiras na qual p
pode ser executado é n

k
. Um plano sem filhos pode ser

executado exatamente de uma maneira. Representamos o
cenário descrito acima respectivamente pelas equações: n(gd)
= jn(pd-1); n(p0) = 1; n(pd) = n(gd)

k
.

B. Adicionando Falha

Estendendo a análise para incluir falhas, determinamos o
número de execuções mal sucedidas. Nenhum mecanismo de
tratamento de falhas será considerado. Para determinar o
número de execuções mal sucedidas, precisamos saber onde
cada falha pode ocorrer. Em sistemas BDI há dois lugares onde
as falhas ocorrem: quando uma meta não possui instâncias de
planos aplicáveis e, quando uma ação dentro do corpo de um
plano falha [2]. Neste trabalho consideramos somente metas
com instâncias aplicáveis. Logo, um plano pode falhar devido à
falha de quaisquer umas das ações e submetas presentes no
corpo do plano. Mais especificamente, um plano falha se a
tentativa de executar sequencialmente seu corpo falha.

Generalizando, podemos assumir que há um número de
ações antes, depois e entre as submetas de um plano. Um plano

Cunha, Cirilo and Lucena

150

sem submetas é considerado consistente e de uma única ação.
Assim, o número de caminhos mal sucedidos de uma meta é
definido por n(gd) = j, de um plano que é uma folha na árvore

(d=0) por n(p0) =  e um plano (d > 0) por  + (n(gd) + 
n(gd)) * (n(gd) - 1/ n(gd) – 1) [2].

C. Adicionando tratamento de falha

Uma forma comum de lidar com as falhas é responder a
falha de um plano, tentando aplicar um plano alternativo ao
evento gerador. Como resultado, é mais difícil ocorrer uma
falha. A única maneira é se todos os planos falharem. O efeito
da adição do tratamento de falha é converter possíveis falhas
para sucessos, ou seja, uma execução que de outra forma seria
mal sucedida, é estendida para uma longa execução que pode
ser bem sucedida. O número de execuções de uma meta com j

instâncias de planos aplicáveis e  ações no corpo do plano,

pode ser representado por: n(gd) = j!n(pd-1)
j
; n(p0) = ;

n(pd) =  + (n(gd) + n(gd))(n(gd)
k
 -1/ n(gd) -1).

D. A probabilidade da execução falhar

A introdução do tratamento de falhas torna a possibilidade
de falha na execução muito menor. Quando olhamos
unicamente para o número de possibilidades de falhas,
verificamos que o número de possibilidade de ocorrer uma
falha é grande. Acontece que, o mecanismo de tratamento de
falhas reduz drasticamente esse número devido a probabilidade
de uma falha, de fato, ocorrer.

E. Análise dos números e equações

Analisando as equações apresentadas verificamos que
percorrer exaustivamente cada caminho possível na árvore de
planos e metas é, de fato, inviável. A medida que a
profundidade e largura da árvore aumentam, o número de
possibilidades de caminhos cresce exponencialmente. Para
dimensões de uma árvore pequena, talvez seja possível fazer
algum tipo de verificação, mas sem dúvida, trata-se de uma
solução não-escalável.

V. CONCLUSÃO

Como contribuição, o presente trabalho revisitou a
literatura relacionada a testabilidade em SMA de agentes BDI.
Essa revisão inicial revelou que, o número de comportamentos
possíveis na execução de agentes BDI de fato cresce à medida
que a profundidade e a largura das árvores de planos e metas
aumentam. Uma observação interessante é que, a introdução de
tratamento de falha faz uma diferença significativa no número
de comportamentos. Ao considerar o teste do sistema como um
todo, concluímos sobre a testabilidade de sistemas de agentes
BDI que, de acordo com as equações apresentadas, tentar obter
a garantia de correção do sistema por meio de testes do sistema
como um todo, não é viável. Na verdade, a situação é ainda
pior quando consideramos não apenas o número de possíveis
execuções, mas também a probabilidade de falha. Então, o teste
do sistema de agentes BDI parece ser impraticável, nessas
condições. Sobre testes unitários e testes de integração, apesar
dos testes de unidade e integração serem relevantes, nem
sempre é clara a forma de aplicá-los utilmente para sistemas de
agentes. Para os agentes BDI, ao testar uma submeta, pode ser

difícil de assegurar que o teste abrange todas as situações em
que podem ser tentados. Igualmente, ao testar um agente sem o
resto do sistema (incluindo outros agentes) pode ser difícil
garantir a cobertura das diferentes possibilidades.

No entanto, a conclusão parece ser a de que SMA BDI são
verificáveis através de testes quando restringimos certas
caracteristica da representação do comportamento dos agentes.
Neste sentido, constatamos que existem diveras lacunas em
aberto e, assim, a existência de uma área promissora de
pesquisa. Podemos considerar como tópicos de pesquisa: (i) a
investigação de mecanismos para geração de planos de testes
automatizados; (ii) rastreamento e mapeamento das condições
de contexto e trocas de mensagens para a sequência de ações
geradas; (iii) análise de um modelo de falhas; e (iv) estudo de
viabilidade de extensão do framework JAT para utilização do
modelo de falhas proposto.

REFERENCES

[1] Sommerville, I., Software Engineering (Sixth edition), Addison Wesley

(2000).

[2] Winikoff, M., Cranefield, S., On the testability of BDI agent systems.
Information Science Discussion Paper 2008/03, University of Otago,
Dunedin, New Zealand, 2008.Disponível em
http://www.business.otago.ac.nz/infosci/pubs/papers/dpsall.htm.

[3] Sudeikat, J., Validation of BDI Agents. In: Bordini, R.H., Dastani,
M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2006. LNCS
(LNAI), vol. 4411, pp. 185–200. Springer, Heidelberg (2007).

[4] Low, C.K., Chen, T.Y., Rönnquist, R.: Automated test case generation
for BDI agents. In: Autonomous Agents and Multi-Agent Systems, vol.
2, pp. 311–332 (1999).

[5] Nunes, I., Lucena, C.J.P., Luck, M. (2011), BDI4JADE: a BDI layer on
top of JADE, in Louise A. Dennis, Olivier Boissier and Rafael H.
Bordini, ed., Ninth International Workshop on Programming Multi-
Agent Systems (ProMAS 2011), Taipei, Taiwan, pp. 88-103.

[6] Padgham, L., Winikoff, M., Developing Intelligent Agent Systems: A
Practical Guide. John, Wiley and Sons (2004).

[7] Bratman, M.: Intentions, Plans, and Practical Reason. Harvard Univ.
Press (1987).

Towards a fault model for BDI agents: an initial study

151

Simulating Consumers Energy Profiles through
Multiagent Systems

Fernanda P. Mota1, Vagner S. da Rosa2, Graçaliz P. Dimuro3, Silvia S. da C. Botelho4
Computational Science Center- Federal University of Rio Grande

Av. Itália km 8 – Campus Carreiros – 96.201-900– Rio Grande – RS – Brasil
{1nandap.mota, 2vsrosa, 3gracaliz, 4silviacb.botelho}@gmail.com

Abstract— Simulation of home use of electric energy is a very

powerful tool for the purpose of studying, planning and
managing at electric energy distribution companies. This paper
presents a NetLogo-based multi-agent system for energy
consumption simulation in residential areas. Several possible
consumers profiles and household appliances with different
powers are modeled and simulated using computational agents.
Simulation results are presented and discussed.

Keywords— Multiagent Systems, NetLogo, Electricity
Consumption

I. INTRODUÇÃO
O consumo de energia é um dos principais indicadores do

desenvolvimento econômico e do nível de qualidade de vida de
qualquer sociedade. Ele reflete tanto o ritmo de atividade dos
setores industrial, comercial e de serviços, quanto à capacidade
da população para adquirir bens e serviços tecnologicamente
mais avançados, como automóveis, eletrodomésticos e
eletroeletrônicos.

Segundo a ANEEL (Agência Nacional de Energia Elétrica),
em maio de 2012 o consumo de energia elétrica cresceu 3,8%
no Brasil em relação ao mesmo período do ano de 2011,
atingindo 36.900 Gigawatts-hora (GWh) [1]. O setor
residencial foi outro que teve crescimento do consumo acima
da média: 4,3%. O destaque desse segmento também foi a
Região Nordeste, que concentrou 36% do aumento.

No entanto, a expansão acentuada do consumo de energia
elétrica, embora possa refletir o aquecimento econômico e a
melhoria da qualidade de vida, possui aspectos negativos tais
como: a possibilidade do esgotamento dos recursos utilizados
para a produção de energia, o impacto ao meio ambiente
produzido por essa atividade e os elevados investimentos
exigidos na pesquisa de novas fontes e construção de novas
usinas [2].

Neste sentido, o trabalho em questão envolve esforços
direcionados em prover dados que auxiliam na análise deste
tipo de situação, por meio das técnicas de simulação baseada
em agentes e mais especificamente com suporte da ferramenta
NetLogo. Deste modo, as seções a seguir, as quais demonstram
mais detalhes desta proposta estão organizadas da seguinte
maneira: seção 2 descreve resumidamente os aspectos
conceituais sobre sistemas multiagentes e a ferramenta

NetLogo; a seção 3 demonstra o modelo inicial de simulação
desenvolvido; a seção 4 relata os resultados que foram gerados
pela execução do modelo e por fim, na seção 5 têm-se
considerações finais e os trabalhos futuros.

II. SISTEMAS MULTIAGENS E NETLOGO
No contexto de Inteligência Artificial, podem-se definir

agentes como entidades computacionais que, inseridos em um
ambiente, são capazes de perceber e atuar sobre o mesmo. Um
agente computacional possui atributos como operar sob
controle autônomo, perceber seu ambiente, persistir por um
período de tempo, adaptar-se a mudanças e ser capaz de
assumir metas [3].

Os Sistemas Multiagentes têm como principal característica
a coletividade e não um indivíduo único, e desta forma, passa-
se o foco para a forma de interação entre as entidades que
formam o sistema e para a sua organização [4].

Existem diversos ambientes de programação que foram
projetados para trabalhar-se com a modelagem baseada em
agentes, contudo com diferentes vantagens conforme tabela 1.

TABELA I. COMPARAÇÃO ENTRE ALGUNS AMBIENTES DE MODELAGEM
BASEADA EM AGENTES [5].

Métrica\Plataforma Ascap Mason Repast NetLogo SWARM

Quantidade de
Usuários Baixa Crescente Grande Grande Baixa

Linguagens Java Java Java
Python NetLogo Java

Objective C

Velocidade de
Execução e

Programação
Média Mais

Rápida Rápida Média Média

Facilidade de
Aprendizagem Média Média Média Média Média

Documentação Boa Pouca Pouca Muita Boa

Neste trabalho optou-se pela ferramenta NetLogo [6],
especialmente por oferecer facilidade de programação,
portabilidade, documentação abundante, acesso e uso
gratuitos. Nele podem ser dadas instruções a centenas ou
milhares de agentes, os quais trabalham paralelamente [7].

Simulating Consumers Energy Profiles through Multiagent Systems

153

III. MODELO DE SIMULAÇÃO NO NETLOGO
O modelo de simulação de consumo de energia baseado no

paradigma de agentes e implementado na ferramenta NetLogo
(Fig. 1), possui as seguintes características:

 Os perfis dos consumidores de energia elétrica, que
são baseados na renda familiar de acordo com os
dados do IBGE [8] foram representados com uma cor
para cada tipo de renda (Fig1), assim:

o Azul: possuem renda até R$800,00;

o Amarelo: possuem renda de R$ 800,00 a R$
1.245,00 ;

o Vermelho: possuem renda de R$6.225,00 a
R$ 10.375,00;

o Vermelho: possuem renda maior que R$
10.375,00.

 Os consumidores e os eletrodomésticos foram
modelados como agentes computacionais racionais,
ou seja, se um equipamento já estiver ligado eles não
irão ligar novamente até que o mesmo seja desligado
e não esquecerão o chuveiro ligado quando saírem de
casa. Especificamente no que se refere ao NetLogo,
podem-se implementar perfis diferentes de agentes
por meio da criação de distintas breeds. Estas
representam a ideia de espécies de agentes, onde cada
uma incorpora um conjunto de diferentes instruções a
serem executados, como por exemplo, na simulação
de uma colmeia os agentes da espécie operária
possuem comportamentos distintos da espécie rainha.

 Os agentes que representam os usuários podem ficar
um período de tempo dormindo, este pode variar de 0
até 8 horas de sono. No entanto, o usuário não irá
consumir enquanto estiver dormindo.

 Os agentes que representam os usuários podem ficar
um período de 8 horas fora de casa. No entanto, o
usuário não irá consumir enquanto estiver fora de casa.

 O consumo de energia de cada equipamento foi
calculado de acordo com os dados fornecidos pelas
distribuidoras de energia light [9] e CEEE [10].

 Os equipamentos possuem a mesma probabilidade de
serem escolhidos, com exceção:

o Renda1: chuveiro, geladeira e televisão que
possuem uma probabilidade maior de serem
escolhidos.

o Renda2: chuveiro, freezer, geladeira e
televisão que possuem uma probabilidade
maior de serem escolhidos.

o Renda3 e Renda 4: chuveiro, freezer,
lavadora de roupas ,geladeira e televisão que
possuem uma probabilidade maior de serem
escolhidos.

 A geladeira e o freezer são os únicos equipamentos
que permanecem ligados por um período de 24 horas.

 O modelo está simulando a estação verão,
demonstrando os equipamentos que ele utiliza neste
período e tempo que cada um deles é utilizado.

Fig. 1: Interface do modelo que simula o consumo de energia
elétrica dos quatro tipos de consumidores.

IV. RESULTADOS PRELIMINARES
Foram modeladas quatro tipos de rendas, onde cada renda é

composta por famílias de 1 a 3 pessoas, as simulações duraram
um período de 24 horas e pelas seguintes características:

A. Renda 1 (renda familiar até R$830,00):
Nesta renda cada família pode conter uma lista de 3 a 10

equipamentos, essa lista varia de acordo com um valor
randômico no início da simulação. No entanto, essa renda terá
no mínimo: uma geladeira, uma televisão e um chuveiro
elétrico. Conforme pode ser observado na Fig. 2, as residências
tiveram um consumo médio de 64,48 kWh e um desvio padrão
de 5,28 kWh.

Fig. 2: Simulação do consumo de energia elétrica da renda 1, onde o
eixo horizontal representa os dias de consumo e o eixo vertical
representa o consumo de energia em kwh para cada dia simulado.

B. Renda 2 (renda familiar de R$830,00 a R$1.245.00):
 Nesta renda cada família pode conter uma lista de 4 a
15 equipamentos, essa lista varia de acordo com um
valor randômico no início da simulação. No entanto,
essa renda terá no mínimo: uma geladeira, uma
televisão, lâmpada de 60 watts e um chuveiro elétrico.
Conforme pode ser observado na Fig. 3, as residências

Mota, Rosa, Botelho and Dimuro

154

tiveram um consumo médio de 112,14 kWh e um
desvio padrão de 4,90 kWh.

Fig. 3: Simulação do consumo de energia elétrica da renda 2, onde o
eixo horizontal representa os dias de consumo e o eixo vertical
representa o consumo de energia em kwh para cada dia simulado.

C. Renda 3 (renda familiar de R$6.225,00 a R$ 10.375,00):
Nesta renda cada família pode conter uma lista de 4 a 20
equipamentos, essa lista varia de acordo com um valor
randômico no início da simulação. No entanto, essa
renda terá no mínimo: uma geladeira, um freezer, uma
televisão e um chuveiro elétrico. Conforme pode ser
observado na Fig. 4, as residências tiveram um consumo
médio de 395,75 kWh e um desvio padrão de 24,65
kWh.

Figura 4: Simulação do consumo de energia elétrica da renda 3, onde o
eixo horizontal representa os dias de consumo e o eixo vertical
representa o consumo de energia em kwh para cada dia simulado.

D. Renda 4 (renda familiar maior que R$ 10.375,00):
Nesta renda cada família pode conter uma lista de 4 até
a 20 equipamentos, essa lista varia de acordo com um
valor randômico no início da simulação. No entanto,
essa renda terá no mínimo: uma geladeira, freezer,
lavadora de roupas, uma televisão e um chuveiro
elétrico. Conforme pode ser observado na Fig. 5, as
residências tiveram um consumo médio de 374,69 kWh
e um desvio padrão de 36,99 kWh.

Fig. 5: Simulação do consumo de energia elétrica da renda 4, onde o
eixo horizontal representa os dias de consumo e o eixo vertical
representa o consumo de energia em kwh para cada dia simulado.

V. CONCLUSÕES
Como demonstrado nos resultados pode-se dizer que a

utilização do paradigma de agentes bem como da ferramenta
NetLogo é uma alternativa interessante para simulações de
cenários de perfis de usuários de energia elétrica, pois os
diversos comportamentos inerentes a sociedade utilitária deste
serviço podem ser mapeados respectivamente em deferentes
tipos de agentes os quais são inseridos em uma ambiente
virtual.

Enfatizamos que estes resultados são reduzidos a escopo de
um teste inicial e estamos buscando dados reais para
futuramente compararmos os resultados atingidos na simulação
com os dados de consumo de energia reais da cidade do Rio
Grande. No entanto, esta avaliação inicial aponta para futuros
trabalhos com mais elementos e maior número de perfis a
serem analisados, sendo este a motivação para os próximos
passos do trabalho.

Como trabalhos futuros serão criados perfis que não são
econômicos e serão simuladas outras estações tais como:
inverno, primavera e outono. Outra perspectiva é o teste
considerando punições que afetem o comportamento dos
agentes, como por exemplo, as multas por excesso de consumo
de energia.

 REFERÊNCIAS
[1] Multiner , “ Consumo de energia elétrica cresce no Brasil e Belo Monte

é garantia para essa demanda,” disponível em: http://www.multiner.
com.br/ multiner/ Default. aspx?Tab Id=117, acessado em: dezembro de
2012.

[2] ANEEL. “Atlas de Energia Elétrica do Brasil, ” disponível em:
www.aneel.gov.br/ arquivos/ pdf/livro_atlas.pdf, acessado em dezembro
de 2012.

[3] S. Russel , P. Norvig, “Artificial Intelligence: A modern approach”, 2nd
edition, Pearson Education, 2003.

[4] G. P. Dimuro, A. C. R. Costa, L. A. Palazzo, “Systems of exchange
values as tools for multi-agent organizations,” journal of the Brazilian
Computer Society, 11(1):3150, 2005.

[5] P. Sapkota, “Modeling Diffusion Using an Agent-Based Approach, ”
PhD thesis, University of Toledo, 2010.

[6] S.Tisue, U. Wilensky, ” Netlogo: A simple environment for modeling
complexity, ” in International Conference on Complex Systems, Boston,
2004.

[7] U. Wilensky, “NetLogo, ” disponível em: http://ccl.northwestern.edu/
netlogo. Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL, 1999.

[8] IBGE. “Pesquisas de Orçamentos Familiares 2008- 2009, despesas,
rendimentos e condições de vida,” 2009.

[9] Light, “Simulador de consumo de energia elétrica, ” disponível em:
http://www.aessul.com.br/areacliente/servicos/simula.asp, acessado em
janeiro de 2013.

[10] CEEE, “Simulador de consumo de energia elétrica, ”disponível em:
www.ceee.com.br/pportal/ceee/component/controller.aspx?cc=1221,
acessado em janeiro de 2013.

Simulating Consumers Energy Profiles through Multiagent Systems

155

Multiagent Systems Simulation of Dengue in Minas
Gerais (Brazil)

Katia Cristina A. Damaceno Borges, Willian Magno Pereira Reis, Alcione de Paiva Oliveira
DPI – Departamento de Informática

UFV- Universidade Federal de Viçosa
Viçosa-MG -Brazil

{katia.borges, willian.reis} @ufv.br, alcione@dpi.ufv.br

Abstract— Due to high rates of spread of Dengue fever, as

well as high impact on global health and its high cost to public
coffers, it is necessary a study on appropriate measures to be
taken prior to installation of the epidemic. However, due to the
high complexity of the variables involved, it is difficult to
describe or make predictions about the advance of the epidemic.
Thus, this paper proposes the modeling and simulation of a
subsequent multi-agent system applied to the scenario of Dengue
in Brazil. The modeling was performed using the software
Netlogo and the chosen endemic region was Uberaba in Minas
Gerais-Brazil. The results showed that the simulator behaved in a
manner consistent with the field data.

Keywords—Disease spread, agent-based model, NetLogo®

I. INTRODUÇÃO

Dengue é uma doença infectocontagiosa causada por
quatro sorotipos de vírus DENV-1, DENV-2, DENV-3 e
DENV-4 [6]. Segundo Kumar et al. [4] a primeira evidência
documentada sobre a dengue vem de uma antiga enciclopédia
médica chinesa de 992. No entanto, nos séculos 18 e 19, o
mosquito vetor da doença (Aedes aegypti) e o vírus da dengue
começaram a espalhar para novas regiões geográficas devido
ao aumento do volume de comércio e transporte entre os
diferentes continentes. A dengue ocorre preferencialmente em
regiões tropicais e subtropicais. O vetor responsável por sua
transmissão se reproduz em água parada. A principal
complicação da dengue é a dengue hemorrágica que tem alto
potencial de mortalidade [5]. De acordo com Barreto et al. [1]
a dengue se distribui ao longo da faixa do equador à 35 º

acima e abaixo desde, conforme Figura 1.

Figura 1. Distribuição da dengue em 2007 fonte: [12]

Até o momento não existe vacina eficaz ou um remédio
especial contra a dengue. Assim, o controle da doença,
atualmente, é realizado combatendo os mosquitos adultos e

eliminando os criadouros, de acordo com as diretrizes da OMS
(Organização Mundial de Saúde) [2]. A eliminação de
criadouros impede o desenvolvimento do inseto nas fases pré-
adultas o que resulta na eliminação do transmissor.

É de suma importância que os gestores municipais e
estaduais tracem as metas de controle da doença, impedindo
que esta se transforme em uma epidemia [2]. A utilização de
simulação da epidemia da Dengue pode ser de suma
importância para que a tomada de decisão seja o mais eficaz e
eficiente possível.

Diante deste contexto, é proposto um simulador baseado
em agentes que pode auxiliar no entendimento da proliferação
da doença. O modelo busca simular um ambiente real criando
situações onde as características relativas à estação climática
(temperatura), eliminação de focos e evolução da doença
devido a diferentes contágios podem ser parametrizados. Este
artigo está organizado da seguinte forma: a seção II apresenta
o quadro da dengue no Brasil; na seção III é descrita a
proposta do simulador para a propagação da dengue; na seção
IV são apresentados os resultados obtidos na simulação
computacional e finalmente a seção V traz as considerações
finais para este trabalho e propostas para trabalhos futuros.

II. DENGUE NO BRASIL

De acordo com estimativas realizadas pela organização
mundial de saúde, anualmente ocorrem 50 milhões de
infecções, sendo que destas 500.000 casos de Febre
Hemorrágica da Dengue (FHD) e destes vão a óbito cerca de
21.000, principalmente em crianças [7]. Ruas et al.[9] define e
explica os estágios que o vetor Dengue pode assumir. São
eles: Ovo, Larva, Pupa e Mosquito.

De acordo com Westaway [12], a transmissão da dengue
ocorre quando um mosquito fêmea não contaminado pica uma
pessoa contaminada, mantém o vírus na saliva e depois do
período de incubação de 8 a 12 dias, retransmite a doença. O
mosquito costuma picar nas primeiras horas da manhã ou no
final da tarde, evitando as altas temperaturas. Existem
suspeitas do ataque de alguns durante a noite. Após a ingestão
do sangue contaminado, o vírus permanece no mosquito por
toda a vida, sendo transmitido a seus descendentes.

Após o contagio, o ser humano apresenta um período de
incubação da doença é de 3 a 15 dias. E então aparecem os

Multiagent Systems Simulation of Dengue in Minas Gerais (Brazil)

157

primeiros sintomas, que costumam durar de 5 a 6 dias. A única
forma de transmissão é através da picada do mosquito
contaminado.

A dengue é uma doença que desperta preocupação
mundial, e mobiliza a comunidade cientifica para estudar
formas de combate e erradicação da doença.

2.1 CENÁRIO DA DENGUE EM UBERABA

Uberaba é um município situado na região do Triângulo
Mineiro, no Estado de Minas Gerais. Ela possui uma
população de 295.988 habitantes, dos quais 289.376 residem
em área urbana [3].

O Levantamento Rápido do Índice de Infestação por Aedes
aegypti (LIRAa) é uma metodologia utilizada pelos
municípios que faz um levantamento dos índices larvários do
Aedes aegypti. Foi desenvolvido pelo Ministério da Saúde em
2002 para contribuir na disponibilização mais rápida de
informações entomológicas geradas pelos gestores e
profissionais que trabalham no controle da dengue [8].

De acordo com dados do LIRAa, entre Janeiro - Fevereiro
de 2013, Uberaba foi classificada com índice 5,3%, o que a
enquadra no grupo de risco. O Informe Epidemiológico
divulgado pelo Ministério da Saúde em 22/02/2013 [7],
Uberaba é o segundo município do estado de Minas Gerais em
número de casos confirmados de Dengue com 3.348 casos. Só
fica atrás de Ipatinga com 4.784 casos.

No Gráfico 1, pode-se ver a distribuição trimestral do
número de casos da dengue ocorridos em 2010 no município
de Uberaba, segundo o resumo informativo de 23/02/2012
divulgado pelo Secretária da Saúde [8] sobre a situação atual
da dengue em Minas Gerais. Estes dados foram utilizados
como comparativos para os experimentos feitos no simulador.

Gráfico 1: Casos de Dengue em Uberaba [11]

III. MODELAGEM PROPOSTA

Para este trabalho foi modelado um SMA (Sistema Multi-
agente) reativo no framework para construção de agentes
NetLogo. Originalmente, o Netlogo foi desenvolvido para
solucionar problemas relacionados a fenômenos sociais e
naturais com alta complexidade e no decorrer do tempo este
passou a ser também utilizado para fins educacionais e de
pesquisa. [10].

Na modelagem de epidemias faz-se necessário o
entendimento do relacionamento das variáveis
epidemiológicas da doença em questão. Para tanto, no modelo
proposto são criados três agentes distintos: o mosquito, o
exterminador e a pessoa. Algumas características são
desconsideradas para efeito de simplificação e restrição do
escopo. A seguir são descritas as características e justificativas

de sua utilização.

Os agentes mosquitos foram modelados apenas como
fêmeas já fecundadas e podem assumir 2 estados: infectado,
que possui o vírus da dengue, e o não-infectado. Estes agentes
transitam pelo ambiente aleatoriamente e buscam as pessoas
para se alimentarem. Sempre que encontram uma pessoa, eles
podem picá-la dada uma probabilidade informada pelo
usuário. Caso o mosquito esteja infectado e pique uma pessoa
não infectada, ele contamina esta pessoa. Caso contrário, se
ele não está infectado e pica uma pessoa infectada, ele passa
para o estado infectado. No ambiente existem pontos que
contem água. Casos os mosquitos encontrem esse pontos, e já
tenham picado alguma pessoa, eles se reproduzem em
proporção a estação do ano corrente, ou seja, a variação da
temperatura interfere a reprodução. Os novos mosquitos
herdam as características do pai, ou seja, caso este esteja
infectado, os gerados também estarão. Estes agentes tem
período de vida de 33 dias, ou até serem mortos pelas
armadilhas do exterminador.

Os agentes pessoas, também como os mosquitos, assumem
estados infectados ou não. Caso eles sejam infectados por
algum mosquito, ele passa para o estado infectado que tem
duração de 15 dias. Após este período voltam ao estado não
contaminado. Existe uma probabilidade deste agente morrer
ao se contaminar, se resultar em dengue hemorrágica. Essa
probabilidade varia de acordo com o número de vezes que o
agente contraiu a doença. Na primeira vez a primeira
probabilidade é de 1%. Na segunda vez, de 10%. Na terceira
de 15%. E a partir da quarta 25% [1].

O agente exterminador anda pelo ambiente, a procura dos
focos de mosquito. Quando ele encontra um foco, ou seja, um
mosquito, deixa uma armadilha no local, que mata os
mosquitos que passarem por aquele local.

 O simulador permite que o usuário forneça entradas para o
ambiente de simulação. Essas variáveis são o número de
mosquitos infectados, o número de mosquitos não infectados,
o número de pessoas infectadas, o número de pessoas sãs, o
número de exterminadores, estação (primavera, verão, outono,
inverno) corrente, a probabilidade de picada do mosquito e o
número de pontos de água parada (criadouro) A duração da
simulação, é um período de 90 dias, que foi considerado como
o tamanho da estação.

IV. EXPERIMENTOS E RESULTADOS

No intuito de aferir o simulador, foram utilizados dados do
município de Uberaba mostrados no Gráfico 2. Como os
dados estavam agrupados em trimestres, considerou-se que
cada trimestre seria uma estação para a entrada (Verão,
Outono, Inverno e Primavera).

Os experimentos foram divididos em quatro partes, de
acordo com as estações. Para cada etapa foi utilizado como
entrada 150 agentes pessoas não infectados e 1 agente
exterminador. A probabilidade de um agente mosquito
picar um agente pessoa, dado que estes estejam num mesmo
quadro, é de 80%. As demais entradas tiveram alterações
acompanhando as características da realidade.

Como a taxa de pluviosidade varia de acordo com a

Borges, Reis and Oliveira

158

estação, sendo maior no verão e menor no inverno, foi
considerado que a quantidade de água parada no ambiente
seguiria esta proporção. Para o verão o número de quadros de
água foram 15, no outono 8, 4 no inverno e 10 na primavera.

A quantidade de mosquito varia de acordo com a
temperatura e por isso foi variada nas entradas. No verão
foram utilizados como entrada 70 mosquitos não
contaminados e 7 contaminados. No outono 50 e 5, 40 e 4 no
inverno e 60 e 6 na primavera. Conforme dito na seção 3, a
temperatura influencia na reprodução dos vetores, então no
verão a taxa de reprodução é a maior e decresce
progressivamente até o inverno.

Na Figura 2 observa-se que o número de mosquitos é
maior onde se encontra água limpa. Estes mosquitos
geralmente estão no mesmo estado, dado que herdam todas as
características do pai. Onde há uma concentração de
mosquitos infectados, as pessoas ao redor tendem a estarem
infectadas. No centro do ambiente não ocorre infecção, pois
como se vê, não há nem pessoas e nem mosquitos infectados.

Figura 2: Tela do ambiente durante uma simulação

Para validar o simulador foi realizada uma série de
experimentos com os dados acima para cada estação e a
média do número de casos de dengue foi utilizado para a
geração do Gráfico 2 e comparado com os dados reais
ilustrados no Gráfico 3.

Gráfico 2: Resultado da Simulação

 Gráfico 3: Resultados Reais

Como pode observar os resultados da simulação com as
entradas acima citadas fornecidas, tiveram um comportamento
muito parecido com os dados do número de casos de Uberaba.
Isto demonstra que o simulador é capaz de simular a
proliferação da dengue.

V. CONSIDERAÇÕES FINAIS E TRABALHOS FUTUROS

Simulações baseadas em SMA proporcionam a simulação
de situações complexas vivenciadas no mundo real, entretanto,
com o beneficio de estar dentro de um ambiente controlado. O
que torna as simulações úteis para análises aplicáveis a
situações reais com uma boa relação custo benefício.

A dengue é uma doença de risco elevado e altamente
complexa. Gerando gastos ao poder público e ocasionando
eventuais mortes a população. Diante disto, faz-se necessário a
compreensão do comportamento das diversas variáveis
envolvidas no processo de disseminação da doença.

Neste cenário, a utilização de um simulador baseado em
SMA é útil para o entendimento do processo endêmico da
doença. Para isso, o simulador proposto neste trabalho teve
por objetivo auxiliar a compreensão dos profissionais
envolvidos no controle, prevenção e gestão da dengue.

Os resultados obtidos mostram uma alta similaridade com
os dados reais, conforme demonstrado nos Gráficos 5 e 6.
Embora, o modelo tenha um escopo reduzido, produziu
resultados satisfatórios. Outra vantagem é que o simulador
possui uma interface simples e de fácil manejo, podendo ser
utilizado pelos gestores públicos no controle da dengue.

 Pretende-se estender este modelo, abrangendo dados
ainda mais realistas em trabalhos futuros, incluindo variáveis
que simulem a variação pluviométrica e geração de água
parada. Outra melhoria poderia ser realizada nos agentes
exterminadores dando a estes um comportamento mais
próximo ao real.

Agradecimentos

Ao CNPQ (Conselho Nacional de Desenvolvimento
Científico e Tecnológico).

Referencias

[1] Barreto, Maurício L., and Maria Glória Teixeira. "Dengue no Brasil:

situação epidemiológica e contribuições para uma agenda de pesquisa."
estudos avançados 22.64 (2008): 53-72.

[2] Dengue (2013) Disponível em: http://www.dengue.org.br acessado em
04/03/2013.

[3] IBGE (2013) Disponivel em:
http://www.ibge.gov.br/cidadesat/topwindow.htm acessado 04/03/2013.

[4] KUMAR, K., SINGH, P. K., TOMAR J., BAIJAL S. Dengue:
epidemiology, prevention and pressing need for vaccine development.
Asian Pacific Journal of Tropical Medicine, Volume 3, Issue 12,
December 2010, Pages 997-1000.

[5] Maciel, I. J., Siqueira Júnior, J.B., and Martelli, C.M.T. "Epidemiologia
e desafios no controle do dengue." Revista de Patologia Tropical 37.2
(2008).

[6] Mcbride W. J.H , bielefeldt-ohmann H. Dengue viral infections;
pathogenesisand epidemiology. Microbes and Infection, Volume 2, Issue
9, July 2000, Pages 1041-1050.

[7] Ministerio da Saúde (2013) Informe epidemiologico dengue 22_02_13.

[8] Secretária da Saúde (2013) disponível em : http://www.saude.mg.gov.br
Acessado em 03/03/2013.

[9] Ruas et. al. An Agent-Based Model for the Spread of the Dengue Fever:
A Swarm Platform Simulation Approach. In: Agent-Directed Simulation
Symposium of the 2010 Spring Simulation Multiconference. Orlando;
2010.

[10] Tissue S, Wilensky U. (2004) NetLogo: A Simple Environment for
Modeling Complexity. In: International Conference on Complex
Systems. Boston.

[11] Westaway EG, Brinton MA, Gaidamovich SY, Horzinek MC, Igarashi
A, Kaariainen L, Lvov DK, Porterfield JE, Russell PK, Trent DW 1985.
Flaviviridae.Intervirology 24: 183-192.

[12] http://gamapserver.who.int/mapLibrary/Files/Maps/World_DengueTrans
mission_Extension_2007.png acessado em 13/03/2013

Multiagent Systems Simulation of Dengue in Minas Gerais (Brazil)

159

Use of High Performance Computing in
Agent-Based Social Simulation: A Case Study on

Trust-Based Coalition Formation

Luciano M. Rosset, Luis G. Nardin and Jaime S. Sichman
Laboratório de Técnicas Inteligentes – EP/USP

Av. Prof. Luciano Gualberto, 158 – trav. 3
05508-970 – São Paulo – SP – Brasil

{luciano.rosset,luis.nardin}@usp.br, jaime.sichman@poli.usp.br

Abstract—Computer models based on agents have shown to
be very useful in the field of social simulation, especially for its
versatility and ease to model complex systems. In the context of
agent simulations, Nardin and Sichman developed a model for
the study of coalition formation among agents, based on trust.
Later, the need of more efficient ways for simulating the model
was acknowledged in order to explore large-scale scenarios. The
solution found was the adoption of a high performance agent-
based computing platform. This article intends to explore the
use of such platform on the Nardin and Sichman’s model by
migrating its code to the Repast HPC tool, which is executed on
the Blue Gene/P supercomputer.

I. INTRODUCTION

In the last decades, computer simulation has proved to be
a viable approach for science, in addition to the traditional
deductive and inductive approaches [?]. According to Banks
[?], computer simulation consists on the reproduction of real
systems through computer models, making the study of these
systems’ dynamics possible without interfering on them. The
application of this approach to the study of social science prob-
lems enables the reproduction of social systems behaviours
through the use of computational methods, which is called
social simulation.

Adequate modelling of social systems is essential for
obtaining a useful simulation. Among the available mod-
elling paradigms, agent-based modelling has many adequate
abstractions for representing such systems: the main one is
the agent abstraction. A comprehensive definition proposed
by Ferber [?] states that an agent is a physical or virtual
entity who (a) is capable of acting in an environment; (b)
is capable of communicating with the others; (c) is driven
by a set of tendencies (individual goals to achieve or a
satisfaction utility to optimize); (d) has its own resources; (e) is
capable of perceiving the environment (limited perception); (f)
has (eventually) a partial representation of this environment;
(g) has competences and offers services; (h) may eventually
reproduce itself; and (i) tends to behave in order to satisfy its
goals using the available resources and competences and taking
into consideration its internal perceptions, representations and
the received communication.

According to Davidsson [?], the intersection between social
simulation and agent-based computing brings forth a new area
denoted Agent-Based Social Simulation (ABSS), whose main

purpose is to provide models and tools for simulating social
phenomena.

In the context of ABSS, Nardin and Sichman proposed an
agent-based simulation model, named Trust and Coalition (or
simply T&C), that integrates the notions of coalition formation
and trust in order to enable the analysis of the impacts of trust
on the formation of partnerships among autonomous agents
[?]. This model was implemented using NetLogo [?], which
is an educational agent modelling and simulating environment.
Based on this implementation, several experiments were car-
ried out identifying that the use of trust is relevant for the
formation of partnership in fully heterogeneous scenarios in
which the agents have high levels of trust intolerance and
volatility [?].

Although these simulations were successfully performed
and provided data for analyses concerning the correlation
between trust and coalition formation, there is an uncertainty
about the influences that different environment features, such
as scale and topology, may cause on such correlation. Thus, in
order to analyse such influences, the execution of simulations
considering larger populations, such as millions of individuals,
is required. However, since the T&C model execution is highly
computational demanding, simulations comprising a larger
agent population would require an unmanageable amount of
time for execution using conventional Agent-Based Modelling
and Simulation (ABMS) tools, e.g. NetLogo. For instance, it
takes about 1 hour to run a simulation considering 2,500 agents
in an Intel i5 2.5 GHz and 4 GB RAM.

High Performance Computing (HPC) is a good path to
follow in order to fulfil the needs of large-scale simulations
[?]. Therefore, in a first step towards an analyses of the T&C
model in a large-scale environment, we decided to migrate
its previous NetLogo implementation to Repast for High
Performance Computing (Repast HPC) [?], and this article
aims to present some details of such implementation.

The remainder of the article is organized as follows. In
section II, we briefly present Repast HPC and its main features,
as well as the motivation for selecting this tool. An overview
of the Trust and Coalition simulation model is presented
in Section III and its implementation using Repast HPC is
described in Section IV. Since this is a ongoing work, we
describe in Section V some of our intended future work.

Use of HPC in Agent-Based Social Simulation: A Case Study on Trust-Based Coalition Formation

161

II. REPAST HPC

Some ABSS models demand great computational capa-
bilities and consume an unmanageable amount of time and
memory when simulated monolithically, i.e., the model’s sim-
ulation is performed using a single process. The single process
has not only strict processing restrictions, but may also be
overwhelmed by memory needs. In order to overcome the
monolithic approach limitations and decrease the simulation
execution time, some approaches were proposed. Among these
different approaches, the most common ones are (i) parallel
computing in which one computer composed of several pro-
cessors execute the simulation in parallel, and (ii) distributed
computing in which several different computers connected
via a network process the simulation in parallel [?]. The
former is known to be the fastest option as it has a reduced
communication overhead, but no software tool capable of
executing agent models based on this approach is available.
Based on the distributed approach, several software tools were
proposed lately, such as SWAGES [?], FLAME [?] and Repast
HPC [?].

Among these tools, we chose to use Repast HPC in this
work because it is the one that presents the greatest advan-
tages concerning flexibility and general use, due to its easy
structure based on contexts and projections [?]. Moreover, it
handles transparently all required inter-process communication
and synchronizes agents status in different processes, when
needed, in order to optimize cross-process information sharing.
Additionally, Repast HPC is the only available, tested and
supported platform that runs in a Blue Gene/P supercomputer,
which is the target machine for performing our large-scale
experiments.

Repast HPC is a cross-platform C++ based environment
for large-scale ABMS. It was developed to run large-scale
agent models which complexity or number would overwhelm
a single process. Its focus is on enabling distributed runs over
multiple processes that communicate and share agents using
Message Passing Interface (MPI). Each individual process
is responsible for executing the behaviours of a subset of
all agents in the simulation. Therefore, each process has a
scheduler, a context and the projections associated with the
context. Repast HPC core components are:

• AgentId – A number that uniquely identifies an agent
in the simulation. It is composed of the agent’s identity
number, process rank and type. The identity number
is a number unique in a specific process rank. The
process rank is the process number the agent is
associated to, being unique for each process. The type
is a number that specifies a class of agents, with the
same behaviour.

• Context – It is a simple container that groups agents
of the same type together; the developer accesses the
agents properties through the context.

• Projection – It imposes a structure in which the
agents are organized. The structure defines relation-
ships among the agents using the semantics of a
projection. Three projections are provided: network,
which consists of a set of nodes and links between
them, defining a graph; grid, where topological in-
formation is included, and agents may occupy a one,

two or three-dimensional matrix, that eventually may
be wrapped (a 2D wrapped grid works as a torus);
and continuous space, which basically is a grid which
coordinates are floating-points.

• Scheduler – It allows agents to schedule events and
avoids processes beginning new tasks before other
processes end their current ones, which guarantees a
consistent simulation execution.

• Data Collection – It gathers agents information and
write them into files/structures. It allows to pro-
duce output files, composed of aggregated or non-
aggregated data from all simulation processes.

All simulations in Repast HPC are managed by a set of
controllers, one per process, which manages all components
such as Contexts, Projections, Data Collections and Scheduler.
In the beginning of the simulation, each controller creates
agents, assigns to each one an AgentId and associates them
with a Context. Projections are then created and associated
to the Context for further positioning of the agents. After
this initial setup, the controllers create several events, which
trigger actions execution. The sequence of the organization
and execution of the events is performed by the Scheduler.
These events generation and actions execution are performed
in steps named ticks and the simulation runs until a predefined
condition is met or a specified number of ticks is reached.
Besides executing the agents behaviours, Repast HPC may
also gather useful information during the simulation, through
its Data Collection feature, writing them into output files.

III. TRUST AND COALITION MODEL

The simulation model used in this work is the Trust and
Coalition (T&C) proposed by Nardin and Sichman [?]. The
simulation model proposes a spatial Prisoner Dilemma (PD)
game that integrates the notions of coalition formation and
trust, which purpose is to enable the analyses of the impacts
of trust on the formation of partnerships through coalitions.

The simulation model is composed of an environment rep-
resented by a grid and a group of agents, each of them located
at one position of the grid. It runs iteratively for a specified
number of cycles. At each cycle, each agent interacts with its
neighbours (von Neumann or Moore neighbourhood) playing
a 2-players PD game, with the following payoff matrix values:
Temptation=5, Reward=3, Punishment=1, and Sucker=0.

At each cycle, each agent is in either one of the possible
states: independent, coalition leader, or coalition member.
When independent, the agent is not associated to any coalition
and chooses between cooperating or not with its neighbours
based on its own strategy. A strategy is randomly assigned
to the agent at the beginning of the simulation, and there are
3 different possible strategies: Tit-For-Tat (TFT), Probabilistic
Tit-For-Tat (pTFT), or Random. When the agent is a coalition
leader or a coalition member, it always cooperates with the
neighbours of the same coalition and does not with other
neighbours, representing its commitment to the group and its
trust on its leader.

Based on the agent’s state, its payoff is calculated differ-
ently. The independent agent payoff is the sum of all the pay-
offs obtained by playing the PD game against its neighbours.

Rosset, Nardin and Sichman

162

The coalition leader agent payoff is a tax calculated over the
sum of all its coalition members payoffs. The coalition member
payoff is defined as follows: (i) the sum of all the coalition
members payoff is calculated, (ii) the value paid as tax to the
coalition leader is subtracted from this value, and (iii) each
coalition member receives the even division of this remaining
value by the number of coalition members.

After the payoff is calculated, each agent can change its
state. The independent agent decides to associate to a coalition
if its payoff is the smallest amongst all its neighbours. In
this case, the agent associates with the coalition with greatest
payoff. If both agents are independent, then a new coalition
is formed and the agent with the greatest payoff becomes the
coalition leader and the other the coalition member. On the
other hand, the coalition member remains or leaves a coalition
based on a trust value in its coalition leader. If its payoff
is not the greatest amongst its neighbours, it decreases the
trust in the coalition leader, otherwise it increases it. When
the trust value decreases to a value below a trust threshold,
then the agent leaves the coalition and becomes independent,
otherwise it remains in the coalition. The coalition leader
becomes independent only when its coalition disppears.

IV. IMPLEMENTATION

As the T&C model has only one Type of agent, our Repast
HPC model uses a single Context to hold nx × ny agents. A
two-dimensional grid Projection is created, and each agent is
located in one cell of grid. The grid is then divided into mx by
my processes (nx and ny must be respectively multiple of mx

and my). Since the agents positioned in the border of the grid
require to interact with agents running on other processes, there
is a component handled by Repast HPC, called buffer, that
synchronizes this exchange of data. Therefore, each controller
accounts for nx/mx × ny/my agents (grid cells, in fact) plus
2(nx/mx+ny/my)+4× 2(size(buffer)−1) agents taking into
account the buffered ones.

The sequence of methods execution divides the events
into smaller ones, corresponding for agent’s decisions, payoff
calculation and coalition management, each of them scheduled
to run simultaneously by all processes.

The only limitation we found in Repast HPC was the
data collection feature, which does not allow gathering data
independently from individual agents, but only by process.
Therefore, we will use HDF51, since it allows data collection
of individual agents similarly to what was done in [?].

V. FUTURE WORK

Since this is an ongoing project, we are still migrating the
model to Repast HPC and no results are currently available.
At the moment, we have performed some preliminary tests
using Repast HPC and migrated part of the simulation model.
However, as soon the migration is completed, we shall perform
some further analyses considering:

• larger populations – This study has a social approach
and one very important point to tackle is the effect of

1http://www.hdfgroup.org/HDF5/

different population sizes. HPC allows us to study the
behaviour of populations with the size of entire cities;

• different topologies – We want to analyse the effect of
narrower rectangular grids, wrapped grids (torus) and
other neighbourhoods;

• more detailed parameter sweep – Earlier NetLogo
simulations were made with a very large variation of
the parameters. One example is the tax paid by coali-
tion members that ranged from 0% to 100% varying
by 25%. HPC will allow swifter simulations, therefore
making it possible to perform a larger number of
simulations.

ACKNOWLEDGEMENTS

Luciano M. Rosset and Jaime S. Sichman are partially
supported by CNPq/Brazil. We would like to acknowledge
the computing time provided on the Blue Gene/P supercom-
puter supported by the Research Computing Support Group
(Rice University) and Laboratório de Computação Cientı́fica
Avançada (LCCA-CCE, Universidade de São Paulo).

REFERENCES

[1] R. Axelrod, “Advancing the art of simulation in the social sciences,”
Complexity, vol. 3, no. 2, pp. 16–22, 1997.

[2] J. Banks, Ed., Handbook of Simulation : Principles, Methodology,
Advances, Applications, and Practice. New York: John Wiley & Sons,
1998.

[3] J. Ferber, Les Systèmes Multi-Agents: Vers une Intelligence Collective,
ser. Informatique, Intelligence Artificielle. Paris: InterEditions, 1995.

[4] P. Davidsson, “Agent based social simulation: A computer science
view,” Journal of Artificial Societies & Social Simulation, vol. 5, no. 1,
p. 7, 2002. [Online]. Available: http://jasss.soc.surrey.ac.uk/5/1/7.html

[5] L. G. Nardin and J. S. Sichman, “Simulating the impact of trust
in coalition formation: A preliminary analysis,” Advances in Social
Simulation, Post-Proceedings of the Brazilian Workshop on Social
Simulation, pp. 33–40, 2011.

[6] U. Wilensky, NetLogo, Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, 1999. [Online].
Available: http://ccl.northwestern.edu/netlogo/

[7] L. G. Nardin and J. S. Sichman, “Trust-based coalition formation: A
multiagent-based simulation,” in Proceedings of the 4th World Congress
on Social Simulation, Taipei, TW, 2012.

[8] J. T. Murphy, “Computational social science and high performance
computing: A case study of a simple model at large scales,” in
Proceedings of the 2011 Computational Social Science Society of
America Annual Conference, Santa Fe, 2011. [Online]. Available: http:
//computationalsocialscience.org/conferences/17-2/csssa-2011-papers

[9] N. Collier and M. North, “Parallel agent-based simulation with repast
for high performance computing,” SIMULATION:Transactions of the
Society for Modeling and Simulation International, pp. 1–21, 2012.

[10] R. M. Fujimoto, Parallel and Distributed Simulation Systems, 1st ed.,
ser. Wiley series on parallel and distributed computing. New York:
John Wiley & Sons, 2000.

[11] M. Scheutz, P. Schermerhorn, R. Connaughaton, and A. Dingler,
“SWAGES: an extendable distributed experimentation system for large-
scale agent-based ALife simulations,” in Proceedings of the 10th
International Conference on the Simulation and Synthesis of Living
Systems, 2006.

[12] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough, “Exploitation of high performance computing in the
FLAME agent-based simulation framework,” in High Performance
Computing and Communication 2012 IEEE 9th International Confer-
ence on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, 2012, pp. 538–545.

Use of HPC in Agent-Based Social Simulation: A Case Study on Trust-Based Coalition Formation

163

Using Interest Management to Improve Load
Balancing in Distributed Simulations

Felipe C. Bacelar, Carlos J. P. de Lucena
Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro, Brasil

{fbacelar, lucena}@inf.puc-rio.br

Pierre Bommel
CIRAD

Unidade GREEN
Montpellier, France
bommel@cirad.fr

Abstract— This paper presents an approach to distribute an

agent-based simulation over a network of computers. The
developed work aims at improving the load balancing of the
simulation distribution. In order to reach such objective, we
propose to use an Interest Management technique presented by
Brian Logan and Georgios Theodoropoulos who proposed to
distribute a simulation by dynamically partitioning the
environment according to the Interest of the agents. In order to
assess its efficiency, we have re-implemented this model using the
distribution mechanisms provided by some of the main multi-
agent system platforms.

Keywords—Load Balancing; Interest Management; Spheres of

Influence; Distributed Simulation; Multi-agent Systems

I. INTRODUÇÃO

 Agentes podem ser entendidos como entidades autônomas
localizadas em um ambiente. Eles são capazes de se comunicar
entre si e interagir com seu ambiente [13]. Sistemas
multiagentes podem ser compostos por conjuntos de agentes
que interagem com o propósito de resolver um problema ou
alcançar um objetivo. Em certos casos, os agentes colaboram
entre si para atingir uma meta em comum. Em outros, os
objetivos dos agentes podem ser opostos [11].

O comportamento autônomo dos agentes e sua capacidade
de tomada de decisão são fatores que tornam a utilização de
sistemas multiagentes muito atrativa para o desenvolvimento
de simulações.

Em nosso contexto é possível definir simulação como uma
representação do comportamento de um sistema, real ou
imaginário, através do tempo [5]. O emprego de simulações
tem sido uma forma muito eficaz de estudar e analisar
problemas reais. A possibilidade de modelar diferentes
cenários para o mesmo problema e reproduzi-los diversas vezes
permite a identificação de situações incomuns e
comportamentos inesperados.

Como os agentes costumam ser unidades complexas de
software, manter um número elevado deles em uma simulação
pode ser muito custoso. Simulações de larga escala, com
centenas ou milhares de agentes, tendem a ter seu desempenho
comprometido.

Uma solução para este problema é distribuir a simulação
entre diversos computadores. Contudo, simplesmente dividir a
simulação em partes e executar cada uma delas em uma

máquina diferente pode não ser uma boa solução. Entre outros
problemas, é preciso considerar o balanceamento de carga.
Balanceamento de carga é uma técnica que visa dividir
coerentemente a carga de trabalho entre computadores de uma
rede, maximizando o desempenho e evitando sobrecarga.

O presente trabalho, referente a uma pesquisa em
andamento, propõe uma abordagem para melhorar o
balanceamento de carga de uma simulação distribuída
explorando o conceito de esferas de influência como estratégia
de gerenciamento de interesse dinâmico.

II. GERENCIAMENTO DE INTERESSE

Em simulações distribuídas de larga escala a comunicação
do tipo broadcast deve ser evitada para reduzir o custo de
comunicação entre as máquinas da rede. Uma proposta para
resolver este problema é conhecida como Gerenciamento de
Interesse [14]. O princípio deste modelo é baseado na idéia de
que as entidades raramente usam todas as informações
disponíveis, mas elas podem manifestar interesse em apenas
um subconjunto de informações que são relevante para elas.
Um agente deve ser provido de acesso apenas ao conjunto de
elementos com os quais poderá interagir (ler/atualizar).
Contudo, esse conjunto pode mudar com o tempo. Ao se
mover pelo ambiente, um agente pode desviar de um
obstáculo e passar a ter um campo de visão maior,
aumentando o número de variáveis que poderá ler, por
exemplo. O mecanismo de Gerenciamento de Interesse deve
ser capaz de se adaptar a estas mudanças [6], [7], [9], [12].

A. Esferas de Influência

Com o intuito de solucionar o problema do gerenciamento
de interesse dinâmico, Logan e Theodoropoulos criaram o
conceito de Esferas de Influência [6], [7], [9], [12]. O modelo
da simulação é divido em conjuntos de Processos Lógicos (LP
na sigla em inglês) concorrentes, cada um mantendo uma parte
disjunta do espaço do sistema. Os LPs podem ser processos
lógicos de agentes ou processos lógicos de ambiente [6], [7],
[9]. Todos os LPs de uma simulação geram um número
limitado de tipos de eventos. Diferentes tipos de eventos
geram diferentes efeitos sobre o estado da simulação.

A esfera de influência de um evento pode ser entendida
como “o conjunto de variáveis lidas ou atualizadas em
decorrência do evento”. A esfera de influência de um LP em

Using Interest Management to Improve Load Balancing in Distributed Simulations

165

um dado intervalo de tempo é a união das esferas de influência
dos eventos gerados por esse LP no intervalo. A interseção das
esferas de influência dos LPs gera uma ordenação parcial das
variáveis de estado em que os primeiros elementos são os
acessados pela maior quantidade de LPs e os últimos são
acessados pela menor quantidade [9]. Esta ordenação parcial
pode ser utilizada para decompor o estado da simulação de
forma a manter um determinado agente no mesmo nó da
plataforma distribuída em que se encontram os elementos com
os quais ele mais interage na simulação. Isto garante uma
redução no custo de comunicação entre as máquinas.

Em [6], [7], [9] e [12] o estado da simulação pode ser
decomposto usando um novo conjunto de processos lógicos
chamados Communication Logical Processes (CLP). Cada
CLP armazenará um subconjunto do estado da simulação.
Inicialmente, toda a simulação é de responsabilidade de um
único CLP. Com o progresso da simulação, o CLP realiza o
cálculo aproximado das esferas de influência dos agentes. Se o
CLP ficar sobrecarregado (atingir um determinado limite de
tráfego de rede, por exemplo), um novo CLP é criado e um
subconjunto disjunto do estado da simulação é atribuído a ele,
normalmente os últimos elementos da ordenação parcial
gerada pela interseção das esferas de influência dos LPs. O
processo é então repetido para o novo CLP, monitorando a
carga e criando novos CLPs caso necessário.

Segundo Logan e Theodoropoulos, o custo computacional
de calcular as esferas de influência é muito alto. Qualquer
implementação eficiente pode apenas aproximar o resultado
ideal [9]. A abordagem apresentada pelos autores foi
implementada em um framework chamado PDES-MAS [10].

III. ABORDAGEM PROPOSTA

No framework PDES-MAS os CLPs são organizados
naturalmente em uma árvore e cada CLP possui informação de
roteamento que indica quais tipos de eventos são relevantes
para seu CLP pai e para seus filhos (LPs e outros CLPs) [9],
[10].

Para simplificar a implementação e adaptação a qualquer
plataforma distribuída de sistemas multiagentes, o trabalho
sugere evitar o uso de CLPs.

Muitas plataformas de sistemas multiagentes podem ser
distribuídas entre máquinas de uma rede local ou até mesmo
pela Internet. Em geral, a plataforma mantém informações
sobre todos os nós conectados e é capaz de gerenciar a
comunicação entre eles.

O presente trabalho propõe utilizar o conceito de esferas de
influência para decompor o estado de uma simulação e
distribuí-la entre os nós de uma plataforma que forneça
recursos de distribuição. Cada nó assumirá o papel de um CLP
passando a conter uma parcela do estado da simulação. No
entanto, o nó não é responsável por guardar informações de
roteamento, deixando para a plataforma o gerenciamento da
comunicação.

Com a finalidade de evitar gargalos na simulação, são
estabelecidos limites que, uma vez atingidos, classificam um
nó da plataforma como sobrecarregado. Alguns critérios úteis
são: uso de CPU, uso de memória e tráfego de rede.

A simulação é iniciada no hospedeiro principal da
plataforma e quando um dos limites estabelecidos é alcançado,
o processo de distribuição é disparado. Utilizando a ordenação
obtida através das esferas de influência dos LPs, uma parte do
estado da simulação é migrada do hospedeiro principal para
um nó disponível na plataforma. Se o nó em questão ficar
sobrecarregado, a migração continua para o próximo nó
disponível. O processo é interrompido quando não há mais nós
sobrecarregados, incluindo o hospedeiro principal, ou quando
não há mais máquinas disponíveis na plataforma.

Durante a execução da simulação, se qualquer nó da
plataforma ficar sobrecarregado, o processo de migração é
disparado novamente.

IV. O MODELO DA SIMULAÇÃO

Para ilustrar o método proposto, está em desenvolvimento
uma simulação simples representando um cenário de
derramamento de petróleo. Este tipo de desastre é comum e
pode causar diversos tipos de impactos ao meio-ambiente.
Entre os mais frenquentes é possível listar: envenenamento de
peixes, bloqueio da luz solar impedindo a fotossíntese das
algas e morte por afogamento de pássaros que tiveram suas
penas cobertas de petróleo (ficando incapazes de voar).

O modelo da simulação é composto por um pequeno
conjunto de classes de agentes. Há uma classe para representar
os barcos recolhedores, uma classe para manchas de petróleo e
uma classe representando células de mar. O ambiente é
apresentado em um grid composto por células de mar.

Fig. 1. Diagrama de classes do modelo de derramamento de petróleo

Como pode ser visto no diagrama apresentado na figura 1,
o agente de mancha possui apenas o comportamento de se
espalhar. O agente barco tem o comportamento de vaguear pelo
ambiente até que uma mancha de petróleo entre em seu campo
de visão. Ao avistar uma mancha, o agente barco percorre o
caminho até ela e a absorve assim que a alcança. Se a
capacidade do barco não for suficiente para absorver todo o
petróleo, outro barco recolhedor é solicitado.

Bacelar, Lucena and Bommel

166

Fig. 2. Execução da simulação em desenvolvimento

A figura 2 apresenta a simulação em desenvolvimento. As
células azuis do grid representam as células do mar. As células
em preto, por sua vez, são representações das manchas de
petróleo. Por último, as células em amarelo são os barcos
recolhedores.

Para exibir graficamente a interação entre os agentes foi
utilizado o framework “Agent. GUI”. O framework provê uma
interface gráfica pré-definida que pode ser adaptada às
necessidades do desenvolvedor. É completamente
desenvolvido em Java e baseado no framework JADE [4].

JADE é uma sigla para Java Agent DEvelopment
Framework. Trata-se de um framework desenvolvido em Java
que fornece recursos para implementação de sistemas
multiagentes [1]. Sua plataforma de agentes é usada no projeto
desenvolvido no presente trabalho, pois possui todos os
recursos de distribuição necessários [1], [2], [3].

V. CONSIDERAÇÕES FINAIS

O presente trabalho é referente a um projeto de pesquisa
em andamento que visa melhorar o balanceamento de carga ao
distribuir simulações. Para isto, propõe a utilização de uma
técnica de gerenciamento de interesse que busca manter cada
agente no mesmo nó da rede que se encontram as partes da
simulação com as quais ele mais interage.

Uma implementação de uma simulação em uma
plataforma distribuída utilizando o método proposto está em
desenvolvimento. Outras técnicas de gerenciamento de
interesse estão sendo analisadas para eventualmente atuarem
em conjunto com o conceito de esferas de influência na
solução final do projeto. Além disto, uma estratégia para
selecionar o melhor nó disponível da plataforma (máquina
mais potente ou com melhor tempo de resposta) deve ser
discutida.

REFERENCES

[1] Bellifemine, F.; Bergenti, F.; Caire, G.; Poggi, A., JADE - A Java
Agent Development Framework. In Proceedings of Multi-Agent
Programming, p. 125-147, 2005.

[2] Bellifemine, F.; Caire, G.; Trucco, T.; Rimassa, G. JADE Programmer’s
Guide. Available at: http://jade.tilab.com/doc/programmersguide.pdf
Access: 10 dec. 2012

[3] Caire, G.; Rimassa, G.; Bellifemine, F. JADE: a versatile run-time for
distributed applications on mobile terminals and networks. In
Proceedings of SMC (2), p. 1882-1888, 2004.

[4] Derksen, C.; Branki, C.; Unland, R. Agent.GUI: A Multi-agent Based
Simulation Framework. In Proceedings of FedCSIS, p. 623-630, 2011.

[5] Fujimoto, Richard M. Parallel and Distributed Simulation Systems. New
York: Wiley Interscience, 2000. 300 p.

[6] Lees, M.; Logan, B.; Minson, R.; Oguara, T.; Theodoropoulos, G.
Distributed Simulation of MAS. In Proceedings of the Joint Workshop
on Multi-Agent and Multi-Agent-Based Simulation (MAMABS’04), p.
21-30, 2004.

[7] Lees, M.; Logan, B.; Minson, R.; Oguara, T.; Theodoropoulos, G.
Modelling Environments for Distributed Simulation. In 1st International
Workshop on Environments for Multi-Agent Systems (E4MAS), in
conjunction with the 3rd International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS04), p. 150-167, 2004.

[8] Lees, M.; Logan, B.; Theodoropoulos, G. 2007. Distributed Simulation
of Agent-based Systems in HLA, ACM Transactions on Modelling and
Computer Simulation, Vol. 17, 3, Available at:
http://doi.acm.org/10.1145/1243991.1243992) ISSN: 1049-3301.

[9] Logan, B.; Theodoropoulos, G. The distributed simulation of multi-
agent systems. In Proceedings of the IEEE 89(2), p. 174-186, 2001.

[10] Oguara, T.; Chen, D.; Theodoropoulos, G.; Logan, B., and Less, M. An
Adaptive Load Management Mechanism for Distributed Simula-tion of
Multi-agent Systems. Proceedings of the Ninth IEEE International
Workshop on Distributed Simulation and Real-Time Applica-tions, pp.
179–186. October 2005.

[11] Parunak, H. V. D.; Brueckner, S.; Fleischer, M. et Odell, J., 2003. A
Design Taxonomy of Multi-Agent Interactions. Pages 123-137 of :
Paolo Giorgini, Jörg P. Müller, James Odell (ed), Agent-Oriented
Software Engineering IV : 4th International Workshop, AOSE 2003,
Melbourne, Australia, July 15, 2003, Revised Papers. Lecture notes in
computer science LNCS, vol. 2935. Springer.

[12] Theodoropoulos, G; Logan, B. An Approach to Interest Management
and Dynamic Load Balancing in Distributed Simulation. In Proceedings
of the 2001 European Simulation Interoperability Workshop, p. 565-571,
2001.

[13] Wooldridge, M.; Jennings, N.R., Intelligent Agents: Theory and
Practice. Knowledge Engineering Review, 10(2), p. 115-152, 199

[14] Morse, K. L.; Interest Management in Large-Scale Distributed
Simulation; Volume 96, Issue 27 of Technical report (University of
California, Irvine. Dept. of Information and Computer Science), 1996

Using Interest Management to Improve Load Balancing in Distributed Simulations

167

1

Simulation and Analysis of Malaria Using
Multiagent Systems

Laurence N. da S. Costa, Diana Francisca Adamatti

Abstract—Malaria is a disease that affects hundreds of millions
of people globally and causes about 1.2 million deaths every
year. Just in Brazil, there is about three hundred thousand
cases of malaria per year. It’s a very serious problem of public
health in the countries which the disease is endemic. This paper
proposes the creation of a computational model of malaria, based
on Multiagent Systems (MAS), which covers aspects such as
infection, mortality, length of incubation and prevention. The
choice to use MAS and Netlogo allowed the creation of a system
which has simpler implementation, but highly configurable and,
with the public health experts help and successive refinements,
it can deliver results more and more reliable.

Index Terms—Malaria, Multiagent Systems, Simulation, Net-
Logo

I. INTRODUÇÃO

A malária é uma das doenças mais letais do mundo e causa
grandes prejuı́zos econômicos e sociais nas regiões de risco
[1]. No Brasil, a grande maioria dos casos concentra-se na
região Norte, mais precisamente na região da Amazônia Legal,
a qual engloba nove estados brasileiros: Acre, Amapá, Ama-
zonas, Mato Grosso, Pará, Rondônia, Roraima e Tocantins.
A malária é uma doença causada por protozoários do gênero
plasmódio, transmitidos por um mosquito do gênero anofelino
[2][3][4]. Quando a fêmea do mosquito pica uma pessoa a
fim de obter sangue, inocula uma saliva anticoagulante. É
através dessa saliva que os protozoários invadem o corpo do
hospedeiro humano. Não existe vacina, sendo a prevenção a
melhor maneira de combater a doença.

Do ponto de vista computacional, um agente é uma entidade
dotada de capacidade de autonomia, podendo tomar decisões
e escolher a melhor maneira de atingir seus objetivos. Os
agentes são capazes de analisar uma situação, gerar alternativas
e escolher a que melhor atenda seus objetivos, e serem capazes
de interagir com outros agentes computacionais para obtenção
de suas metas [5].

Sistemas Multiagentes (SMA) são compostos por agentes
que, inseridos em um ambiente, interagem uns com os outros,
a fim de satisfazer um objetivo ou conjunto de objetivos.
Os agentes inseridos nesse ambiente possuem caracterı́sticas
distintas de capacidade e percepção do ambiente. Em um
SMA, os agentes podem trabalhar em conjunto para atingir
objetivos gerais, ou então terem objetivos individuais, mas que
precisam da interação de outros agentes para completá-los.

Embora haja estudos sobre epidemias com sistemas mul-
tiagentes [6], a quantidade de material sobre simulação da
Malária em português é escassa [7][8], e não utiliza a mesma
ferramenta utilizada por esse trabalho, o Netlogo. Existem
trabalhos que fazem modelagem estatı́stica [9], contudo,
utilizando-se a abordagem de sistemas multiagentes, é possı́vel

criar uma simulação bastante flexı́vel, pois torna-se possı́vel
modificar vários parâmetros do cenário, tais como taxa de
contágio e ı́ndice de mortalidade.

Este artigo está organizado em 3 seções: a seção II mostra
o modelo computacional da malária; a seção III apresenta os
resultados dos testes, e a seção IV conclui o artigo e apresenta
propostas para trabalhos futuros.

II. MODELO COMPUTACIONAL

No modelo apresentado, cada retângulo representa um tipo
de agente, e as setas representam as interações que ocorrem
entre diferentes tipos. Por exemplo, a interação entre um
agente mosquito sadio com um Homem doente P. Vivax resulta
em um terceiro tipo de agente, o Mosquito transmissor P.
Vivax. Essa relação simula um mosquito sadio que, ao picar
um indivı́duo com malária, é infectado com o plasmódio da
mesma espécie que infectou a pessoa picada pelo mosquito.

Na Figura 1 é mostrado o modelo completo, que representa
as possibilidades viáveis. Em seguida são mostrados os difer-
entes ciclos que o mosquito, o plasmódio e o ser humano
podem estar inseridos.

Todos os ciclos partem do princı́pio que o mosquito está ini-
cialmente sadio, e contrai as formas infectantes do plasmódio
através de indivı́duos doentes.

A. Ciclos do Modelo

O modelo desenvolvido é composto de vários ciclos.
Ciclo 1

Passos: 1 → 2 → 3 → 4a
O mosquito sadio pica um indivı́duo infectado (1)
e torna-se vetor da malária (2). Os vetores picam
indivı́duos sadios (3) e estes contraem a doença (4a).

Ciclo 2
Passos: 1 → 2 → 3 → 4a → 4b
Semelhante ao ciclo 1. O mosquito sadio pica um
indivı́duo infectado (1), torna-se vetor da malária
(2), estes picam indivı́duos sadios (3), os quais ficam
doentes (4a). Entretanto, conseguem se curar (4b).

Ciclo 3
Passos: 1 → 2 → 5a → 6
O mosquito sadio pica um indivı́duo infectado (1),
torna-se vetor da malária (2) e estes picam indivı́duos
curados da malária (5a). Adoecem novamente (6).

Ciclo 4
Passos: 1 → 2 → 3 → 4a → 4b → 5b
Semelhante ao ciclo 2. O mosquito sadio pica um
indivı́duo infectado (1) e torna-se vetor da malária
(2). Estes picam indivı́duos sadios (3), os quais

Simulation and Analysis of Malaria Using Multiagent Systems

169

2

ficam doentes (4a), mas conseguem se curar (4b).
Entretanto, plasmódios latentes nas células do fı́gado
ficam ativos, e o indivı́duo contrai novamente a
malária (5b). 1

Figura 1. Modelo computacional completo

III. RESULTADOS

Foi elaborado um cenário com muitas pessoas doentes, pou-
cas sadias e muitos mosquitos, chamado de “caso extremo”.
Os testes foram executados sem medida de prevenção e com
medida de prevenção.

Foram executados 10 iterações para os dois tipos de teste,
todos com os mesmos dados iniciais. A tabela II mostra as
taxas de contágio de cada plasmódio, a Tabela I exibe as taxas
de mortalidade e a Tabela III mostra a configuração inicial dos
agentes.

Tabela I
TAXAS DE MORTALIDADE

Plasmódio taxa de mortalidade
P. vivax 10%

P. falciparum 80%
P. malariae 1%

P. ovale 1%

Tabela II
TAXAS DE CONTÁGIO

Plasmódio taxa de contágio
P. vivax 90%

P. falciparum 13%
P. malariae 4%

P. ovale 3%

Tabela III
DADOS INICIAIS DO CASO EXTREMO

inicial pessoas 300
inicial mosquitos 80

inicial vivax 70
inicial falciparum 70

inicial ovale 70
inicial malariae 70

1A recaı́da ocorre apenas para as espécies P. Vivax e P. malariae.

A. Resultados sem medida de prevenção
Após a execução de 10 simulações, a Tabela IV exibe a

média dos resultados.

Tabela IV
RESULTADOS DO CASO EXTREMO

doentes vivax 139,7
doentes falciparum 0

doentes ovale 0
doentes malariae 0

mortes 79,8
curados 7.409,6

recaı́das vivax 0
recaı́das malariae 0

A quantidade de pessoas contaminadas com o plasmódio
P. vivax é de 139,7, sendo que muitas dessas pessoas podem
já ter contraı́do a doença várias vezes. Os contaminados pelas
outras espécies de plasmódio são zero ou muito próximo disso;
a possı́vel causa é que os mosquitos transmissores desses
plasmódios morreram antes de conseguirem transmitir o pro-
tozoário. No caso do P. falciparum, as pessoas contaminadas
com esse plasmódio devem ter morrido antes do mosquito ter
uma chance de picá-las.

A média de cura é de 7.409,6 pessoas, sua imensa maioria
eram doentes de P. vivax. Esse número mostra que, embora a
taxa de contágio seja muito alta, as chances de cura também
são grandes, embora o risco de morte não seja zero. Na
simulação, as pessoas recuperam-se totalmente (passam de
doentes para sadios), mas ela não mostra as sequelas que esse
plasmódio pode vir a deixar na pessoa a qual ele infectou.

B. Resultados com medida de prevenção
A medida de prevenção trata-se de um agente que se

move aleatoriamente pelo ambiente e mata todo mosquito que
estiver ao redor dele, seja sadio ou transmissor. A ideia desse
agente de prevenção é simular um dedetizador que pulveriza
inseticida nas áreas percorridas por ele.

Tanto os dados iniciais quanto as taxas de contágio dos
testes com medida de prevenção são os mesmos dos sem a
medida de prevenção, apenas foi acrescentado o agente que
vai diminuir a população de mosquitos no ambiente. Também
foram executadas 10 simulações para este caso. A média dos
resultados está ilustrado na Tabela V.

Tabela V
RESULTADOS DO CASO EXTREMO COM PREVENÇÃO

doentes vivax 1,4
doentes falciparum 0

doentes ovale 0
doentes malariae 0

mortes 81
curados 1.140,9

recaı́das vivax 59,7
recaı́das malariae 0

O acréscimo de um agente de prevenção trouxe mudanças
significativas na quantidade de doentes e na de curas. Mesmo

Costa and Adamatti

170

3

com um pequeno aumento de óbitos, o número de infec-
tados com o plasmódio P. vivax diminuiu drasticamente. A
quantidade de pessoas curadas pode ser considerada elevada
à primeira vista, mas é bem menor que os apresentados pelos
testes sem prevenção.

IV. CONCLUSÕES E TRABALHOS FUTUROS

O imenso número de casos registrados todos os anos,
principalmente em regiões com Índice de Desenvolvimento
Humano (IDH) baixo, torna a Malária um dos principais
problemas de saúde pública no mundo.

Este trabalho apresentou um modelo computacional para
a doença da Malária, apresentando os principais ciclos ex-
istentes. Na literatura pesquisada, um modelo assim não foi
encontrado. Desta forma, acredita-se que este modelo é uma
contribuição do trabalho realizado.

Os sistemas multiagentes e o Netlogo proporcionaram o
desenvolvimento de um sistema muito versátil, sendo possı́vel
realizar simulações com os mais variados dados de entrada,
forneceram recursos para construir interfaces limpas e per-
mitem que refinamentos posteriores possam ser feitos com
relativa facilidade. O sistema desenvolvido fornece resultados
iniciais, mas já mostra como a dinâmica da doença funciona
e como medidas de prevenção podem ser eficazes, além de
contribuir com um modelo para a ferramenta Netlogo.

Como trabalhos futuros, vislumbra-se a implementação de
outras medidas de prevenção, bem como permitir ao usuário
maior controle dessas medidas através da interface. Também
acredita-se que a avaliação mais rigorosa do modelo por espe-
cialistas em saúde pública seja uma próxima etapa, tornando
o modelo desenvolvido mais fidedigno a realidade.

REFERÊNCIAS

[1] “Malaria,” http://portal.saude.gov.br/portal/saude/profissional/
area.fm?id area=1526, 2012, acesso em: maio de 2012.

[2] D. Varella, “Malaria,” http://drauziovarella.com.br/doencas-e-
sintomas/malaria/, 2012, acesso em: maio de 2012.

[3] “Malária: Sintomas, tratamento e prevenção,”
http://www.brasilescola.com/doencas/malaria.htm, 2012, acesso em:
maio de 2012.

[4] C. F. D. Control and Prevention, “Anopheles mosquitoes,”
http://www.cdc.gov/malaria/about/biology/mosquitoes/, 2012, acesso
em: maio de 2012.

[5] S. O. Rezende, Sistemas Inteligentes - Fundamentos e Aplicações.
Manole, 2003.

[6] C. N. da Fonseca, “Um modelo baseado em agentes para simulação
experimental de mecanismos de controle da disseminação da dengue,”
Mestrado em Modelagem Computacional, Universidade Federal do Rio
Grande, 2012.

[7] A. P. B. da Silva, W. P. Tadei, and J. M. M. dos Santos, “Variabilidade
genética em populações de anopheles darlingi (diptera: Culicidae) e
relação ao comportamento da atividade de picar, analisada por rapd,”
Acta Amazônia, vol. 40, no. 3, pp. 585–590, 2010.

[8] W. P. Tadei, J. M. M. dos Santos, W. L. de Souza Costa, and V. M.
Scarpassa, “Biologia de anofelinos amazônicos,” Revista do Instituto de
Medicina Tropical de São Paulo, vol. 30, no. 3, pp. 221–251, Maio-
Junho 1988.

[9] F. T. M. Costa, “On the pathogenesis of plasmodium vivax malaria: Per-
spective from the brazilian field,” International Journal of Parasitology,
vol. 1, no. 1, 2012.

[10] A. P. Gomes, R. R. Vitorino, A. de Pina Costa, E. G. de Mendonça,
M. G. de Almeida Oliveira, and R. Siqueira-Batista, “Malária grave
por plasmodium falciparum,” Revista Brasileira de Terapia Intensiva,
vol. 23, no. 3, pp. 358–369, 2011.

[11] WHO, “World malaria report 2011,” World Health Organization, Tech.
Rep., 2011.

[12] SVS, “Sivep - malária,” http://portal.saude.gov.br/portal/arquivos/pdf/
boletim malaria 2010 2011.pdf, 2011, acesso em: maio de 2012.

[13] ——, “Manual de diagnóstico laboratorial da malária,” Ministério da
Saúde, Tech. Rep., 2005.

[14] L. P. Reis, “Coordenação em sistemas multi-agente: Aplicações na
gestão universitária e futebol robótico,” Ph.D. dissertation, Faculdade
de Engenharia da Universidade do Porto, Julho 2003.

[15] J. S. Garcia, A. C. B.; Sichman, Sistemas Inteligentes - Fundamentos e
Aplicações. Manole, 2003, ch. Agentes e Sistemas Multiagentes, pp.
269–306.

[16] U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo/, 1999.

Simulation and Analysis of Malaria Using Multiagent Systems

171

Agent-Based Simulation to a Decision Support System to Pollutant

Dispersion

Narúsci dos S. Bastos
¹
, Bianca P. Marques¹, Diana F. Adamatti

¹

1
Centro de Ciências Computacionais – Universidade Federal do Rio Grande (FURG)

Caixa Postal 474 – 96.201-900 – Rio Grande – RS – Brasil

Abstract .- This paper presents a decision support system

(DSS) prototype that uses Agent-Based Simulation adjusted to a

simulated pollutant dispersion. The goal is to assist in choosing a

suitable location for the construction of new industries through

computational simulation tools that make predicting risks that

may occur in the chosen region. The DSS allows the good choice

of a location for industry to avoid the pollution that directly

affects the population.

Keywords—agent-based simulation; decision support system;

pollutant dispersion

I. INTRODUÇÃO

 Este artigo apresenta o modelo de um sistema de apoio à
decisão (SAD) que utiliza Simulação baseada em Agentes
ajustado a um simulador de dispersão de poluentes. O objetivo
é auxiliar na escolha de um local apropriado para a construção
de novas indústrias, através de ferramentas de simulação
computacionais que fazem a previsão de riscos, que podem
ocorrer na região escolhida.

Com a evolução industrial e o aumento populacional essas
indústrias acabam atingindo a população com a remessa de
poluentes lançados a atmosfera, e o SAD permite que ajudemos
a indústria, escolhendo um lugar que tem o melhor escore do
calculo feito pela formula, para que evite esta poluição ligada
diretamente com a população

II. SISTEMA DE APOIO À DECISÃO

 Um Sistema de Apoio à Decisão é um modelo genérico

de tomada de decisão que analisa um grande número de

variáveis para que seja possível o posicionamento a uma

determinada questão. Segundo Turban et. al. [2], um Sistema

de Apoio a Decisão (SAD) é um sistema de informação

baseado em computador que combina modelos e dados em

uma tentativa de resolver problemas semiestruturados e alguns

não estruturados com intenso envolvimento do usuário.

 A ideia desse trabalho é desenvolver um SAD baseado em

Sistemas Multiagentes, para que a tomada de decisão seja da

forma ambientalmente mais correta.

 Com o crescimento populacional e industrial tecnológico,

necessita-se também do crescimento da preservação

ambiental, pois com o crescimento industrial, a poluição

também aumenta causando danos ambientais e para a saúde da

população. A simulação computacional é utilizada para prever

essas consequências futuras auxiliando na tomada de decisão,

avaliando os riscos que serão causados, sem perturbar esta

região que está sendo avaliada. Este simulador escolhe o local

que tem o melhor escore do cálculo feito através da formula,

para a inserção de uma nova indústria, tendo em vista que a

poluição não atinja diretamente a população, que é

representada pelos multiagentes na simulação. O simulador foi

subdividido em quatro módulos: manipulação de mapas,

inserção de novos objetos, propagação da poluição e SAD.

A. Funcionamento do SAD

 A Figura 2 ilustra o funcionamento do SAD. O sistema

segue os seguintes passos:

1. Escolha dos possíveis locais para inserção da indústria;

2. Definição dos parâmetros da indústria que são
passados ao simulador;

3. Início do processamento do simulador;

4. Armazenamento dos dados que serão acessados pelos
agentes;

5. O coordenador acessa os dados armazenados;

6. O coordenador repassa as informações para os demais
agentes participantes;

7. Cada agente processa sua avaliação individual;

8. O agente decide o local a ser inserida a indústria de
acordo com seu perfil;

9. Cada agente informa sua decisão ao coordenador;

10. O coordenador contabiliza o número de votos;

11. O coordenador repassa a decisão final para o
simulador;

12. O simulador gera um mapa final com a localização da
nova indústria;

13. O mapa é apresentado ao usuário.

Agent-Based Simulation to a Decision Support System to Pollutant Dispersion

173

Figura1. Fluxograma do SAD

A ideia desse SAD foi apresentada inicialmente por Nunes et.

al. [4].

B. Agentes e seus critérios de avaliação

 Para a tomada de decisão do local a ser inserida a nova

indústria, os agentes baseiam-se em um cálculo de avaliação

representado pela Figura 2, proposto por Nunes et. al. [4].

Nesta fórmula, é feito um somatório ponderado do critério de

avaliação multiplicado pela taxa atribuída ao mesmo. Após

este cálculo, a localização da indústria que possui a maior

avaliação é escolhida pelo agente que possui o melhor escore

do calculo feito pela formula.

Figura2.Cálculo de avaliação

 Foram criados os seguintes critérios de avaliação com os

respectivos pesos:

 Político: custo: 0.1, tempo de construção: 0.8 ,

impacto ambiental: 0.6 , opinião publica: 1, geração

de empregos: 1, lucros: 0.5 , impostos: 1.

 Empresário: custo: 1, tempo de construção: 1,

impacto ambiental: 0.3, opinião publica: 0.2, geração

de empregos: 0.5 , lucros: 0.6, impostos: 0.7.

 Secretaria do meio ambiente: custo 0.7, tempo de

construção 1, impacto ambiental 1, opinião publica

0.5, geração de empregos 0.5, lucros 0.6, impostos

0.7

 Representante da população: custo: 0.5 , tempo de

construção: 1, impacto ambiental: 0.7, opinião

publica: 1, geração de empregos: 1, lucros: 0.1,

impostos: 0.7

 Para fazer o cálculo, nesta pesquisa, usa-se para os valores

das taxas: Tx_custo, Tx_TempoConst, Tx_ImpAmbiental,

Tx_opiniãoPública, Tx_geraçãoEmpregos, Tx_lucros e

Tx_impostos, os valores correspondentes de cada taxa são

randômicos e variam de 0 a 100.

C. Ferramenta NetLogo

 O Netlogo é uma ferramenta que possui uma linguagem de

programação simples, sendo este voltado para modelagem e

simulação de fenômenos naturais e/ou sociais [4][5].

 Essa ferramenta é especialmente adequada para modelar

sistemas complexos, que evoluem ao longo do tempo. Os

desenvolvedores podem dar instruções a dezenas, centenas ou

milhares de agentes, que funcionam de forma independente,

interagindo entre si e com o ambiente. Tornando-se assim

possível de explorar a ligação entre o comportamento dos

indivíduos locais e padrões macroscópico que surgem através

de suas interações. Suas simulações são particularmente

endereçadas a áreas de conteúdos como ciências naturais e

sociais, incluindo a biologia, medicina, física, química,

matemática, ciência da computação, ciência econômica e

psicologia social.

D. Implementação com a ferramenta NetLogo

 Os agentes a serem implementados no SAD são: os

políticos, os secretários do meio ambiente, a população, os

empresários e as indústrias, criou-se as variáveis intrínsecas a

cada um dos agentes, variáveis estas que são os critérios de

avaliação, mencionados na seção B, Após serem definidas as

características dos agentes implementou-se o cálculo de

avaliação, dentro da variável eat, como pode-se visualizar na

linha1, em que permite realizar as funções especificadas a

cada “tick”, iteração. Entre as linhas 2 e 8 atribui-se o random

para determinar os valores dos pesos, aleatoriamente.

Seguindo o algoritmo descrito na linha 9 logo abaixo, a cada

iteração, a variável set P_total recebe o valor do somatório

ponderado do critério multiplicado pelo peso atribuído ao

mesmo.

 1. to politician-eat

 2. set custo random 100

 3. set tempo random 100

 4. set impacto random 100

 5. set op random 100

 6. set emprego random 100

 7. set lucro random 100

 8. set impostos random 100

 9. set P_total (P_cust * custo)+ (P_temp * tempo)+

(P_impact * impacto)+(P_op * op)+

 10. (P_emp * emprego)+ (P_luc * lucro)+ (P_imp

* impostos)

 11. set P_avaliacao (P_total)

 12. end

 Para a apresentação do resultado final, inseriu-se dentro

do bloco go, que recebe o comando de execução das iterações

enviadas pelo Button Go ou Go once, os agentes criados com a

função eat, logo uma estrutura de controle IF em que cada um

dos resultados de cada agente é comparado com o outro, para

Bastos and Adamatti

174

identificar o que apresenta o maior valor, sendo encontrado é

impresso na tela através do comando user-message a melhor

hipótese, a cada iteração realizada. Como se pode observar o

algoritmo a seguir:

to go

 ask industries [industry-eat]

 ask politicians [politician-eat]

 ask secretaries [secretary-eat]

 ask populations [population-eat]

 ask entrepreneurs [businessman-eat]

 tick

if (P_avaliacao > S_avaliacao and P_avaliacao >

Pop_avaliacao and P_avaliacao > E_avaliacao) [

user-message (word "O agente político apresentou a

melhor avaliação:" P_avaliacao " ")]

 if (S_avaliacao > P_avaliacao and S_avaliacao >

Pop_avaliacao and S_avaliacao > E_avaliacao)

 [user-message (word "O secretário do Meio

Ambiente apresentou a melhor avaliação:" S_avaliacao

" ")]

 if (Pop_avaliacao > S_avaliacao and Pop_avaliacao

> P_avaliacao and Pop_avaliacao > E_avaliacao)

 [user-message (word "Representante da População

apresentou a melhor avaliçao:" Pop_avaliacao " ")]

 if (E_avaliacao > S_avaliacao and E_avaliacao >

P_avaliacao and E_avaliacao > Pop_avaliacao)

 [user-message (word "O empresário apresentou a

melhor avaliação:" E_avaliacao " ")]

 Tick

End

III. RESULTADOS PARCIAIS

O simulador gerou os resultados dos cálculos de avaliação

para cada agente, com os valores definidos para cada critério

de avaliação (custo, tempo construção, Impacto ambiental,

opinião publica, geração empregos, lucros e impostos) e

usando valores randômicos para os pesos (Tx_custo,

Tx_tempo construção, Tx_Impacto ambiental, Tx_opinião

publica, Tx_geração empregos, Tx_lucros e impostos), sendo

realizadas diversas iterações, sempre começando do zero

novamente (ou seja, a iteração anterior não influencia na

próxima) apenas para fazer uma média das escolhas realizadas

pelo SAD. Executou-se duas simulações, cada uma com 206

iterações, logo exportou-se para Excel os valores de cada

iteração recebida para cada agente, obtendo-se os resultados

da media para cada um deles, como podemos ver na Tabela 1,

a comparação dos resultados:

TABELA 1: RESULTADOS PARCIAIS OBTIDOS

Média

Agente Iteração 1 Iteração 2

Político
15.117.500.000.000.000

21.820.500.000.000.000

Empresário

22.587.961.783.439.500

16.021.500.000.000.000

Secretário do

meio

ambiente

15.166.800.000.000.000

18.286.600.000.000.000

Representante

da população

14.615.941.176.470.600

14.030.400.000.000.000

Na primeira iteração, de acordo com os critérios de
avaliação fica claro que com os valores hipotéticos, o
Empresário apresenta o melhor resultado, tendo a maior média,
de 22.587.961.783.439.500, sendo escolhido como o melhor
local para instalar a industria. Já na segunda iteração o melhor
resultado, para instalar a industria é apresentado pelo agente
político, com uma média de 21.820.500.000.000.000.

IV. CONCLUSÃO E TRABALHOS FUTUROS

O simulador proposto visa escolher o melhor local a ser

inserida a nova indústria utilizando sistemas multiagentes, por

assemelharem-se ao comportamento humano. Como estes

agentes alimentam o sistema de apoio à decisão, tem-se

comportamentos e decisões similares as que serão tomadas no

mundo real.

 A proposta apresentada neste artigo ainda é inicial, em

relação a sua implementação, sendo assim os resultados

apresentados são iniciais e precisam de maiores análises.

Contudo, percebe-se que a ferramenta NetLogo permite a

implementação de todos os aspectos desejados para o SAD de

forma ampla e facilitada.

 Como trabalhos futuros, temos a inserção de modelos mais

reais de Propagação de Poluição que é um coeficiente que faz

parte do simulador de desenvolvimento, bem como os ajustes

das regras e cálculos do agente coordenador.
Pretende-se ainda estudar a viabilização do uso de outras

técnicas como estratégias de decisão coletiva. Outra meta seria
estender o trabalho desenvolvido não apenas para o cálculo de
impactos gerados pela instalação de indústrias como também
para outros tipos de construções. Assim mesmo que não
tome uma decisão autônoma, o simulador auxiliará os
respectivos órgãos responsáveis a fazer a melhor escolha.

REFERENCES

[1] Camila D. Thomasi, Gerson L. Nunes, Priscila S. Teixeira, Márcio M.

Jugueiro, Diana F. Adamatti e Carlos R. A. Tagliani (2011). “Um

sistema para previsão de impactos gerados pela instalação de

indústrias e sua influência sobre ecossistemas costeiros no extremo

sul do Brasil.” em: WCAMA – Workshop de Computação Aplicada ao
Meio Ambiente e aos Recursos Naturais – CSBC.

[2] Efraim Turban, Dorothy Leidner, Ephraim Mclean e James Wetherbe
(2010). “Tecnologia da Informação para Gestão”. Parte V, Sistemas
Gerenciais e Sistemas de Suporte à Decisão. Ed. Bookman, 6ª Edição.

[3] Gerson L. Nunes, Camila D. Thomasi, Márcio M. Jugueiro e Diana F,
Adamatti (2011). “Um Sistema de Apoio a Decisão baseado em

agentes para simulação de impactos gerados pela instalação de

indústrias”. Em: WESAAC 2011 – Workshop-Escola de Sistemas de
Agentes, seus Ambientes e Aplicações. Curitiba.

[4] NetLogo 5.0 (2012), User Manual, Fevereiro. Acesso em 26.05.2012.

[5] Prisma, “Breve introdução a ferramenta NetLogo”
http://cftc.cii.fc.ul.pt/PRISMA/capitulos/netlogo/topico3.php, acesso em
26 de maio.2012.

[6] Solange Oliveira Rezende. Sistemas Inteligentes - Fundamentos e
Aplicações. 1. ed. Manole: São Paulo, 2002. pg. 270-303.

[7] L .O. Alavares; J. S. Sichman Introdução aos sistemas multiagentes.
em: SOCIEDADE BRASILEIRA DE COMPUTAÇÃO. Jornada de
Atualização em Informática. Brasília - UnB, 1997. p. 1-37.

Agent-Based Simulation to a Decision Support System to Pollutant Dispersion

175

A Brownian Agent approach for modeling and
simulating the population dynamics of the

schistosomiasis contagion

Renato L. Cagnin, Ivan R. Guilherme, Filipe Marcel F. Gonçalves, and Alexandro Baldassin
Departamento de Estatística, Matemática Aplicada e Computação

Universidade Júlio de Mesquita Filho (UNESP)
Rio Claro, Brazil

rlcagnin@rc.unesp.br, ivan@rc.unesp.br, filipemfg@gmail.com, alex@rc.unesp.br

Abstract—Multiagent Simulations have been successfully
employed in the studies of population behavior. We present a
brownian agent approach for simulating the Schistosomiasis
infection. Early results suggest that the proposed model describes
relevant aspects of the infection conditions.

Keywords—Simulation; schistosomiasis; brownian agents;
contagion.

I. INTRODUÇÃO

Sistemas Multiagentes têm sido adotados com êxito na
simulação de diversos problemas [1]. Neste tipo de simulações,
pressupõe-se que os agentes individuais que formam o sistema
são dotados de certa autonomia e inteligência. Estes agentes
interagem para que um propósito, ou um comportamento
global seja atingido. Estas interações entre os diversos agentes
influenciam a dinâmica do sistema como um todo.

As simulações Multiagentes (MABS) vêm sendo
empregadas para o estudo de sistemas complexos como a
modelagem de sistemas ecológicos, modelagem do
comportamento de populações para a previsão de
criminalidade, dinâmica de populações biológicas, dispersão de
informações, formação de grupos, entre outros [2]. Uma outra
importante utilização de MABS tem sido feita no contexto do
contágio e disseminação de doenças, como por exemplo a
malária [3].

Há diversas abordagens para a modelagem de MABS.
Neste trabalho a modelagem utilizada é dos agentes
brownianos. Um agente browniano é caracterizado por ser
capaz de gerar um campo de informação local que também
pode influenciá-lo ou a outros agentes. A vantagem no uso de
agentes brownianos se deve à facilidade de modelagem de
problemas que apresentam difusão de informação ao longo do
tempo e espaço [4].

Neste trabalho é apresentado a utilização do modelo de
agentes brownianos para a simulação do contágio da
esquistossomose [5].

II. A ESQUISTOSSOMOSE

A esquistossomose é uma verminose debilitante que pode
ser letal e é causada no ser humano pelo parasita platelminto
adulto, do gênero Schistossoma. O ciclo da doença apresenta

dois hospedeiros: o caramujo do gênero Biomphalaria –
hospedeiro intermediário, e o homem – hospedeiro definitivo.
A esquistossomose ocorre em regiões onde existem córregos,
açudes e baixo ou inexistente saneamento básico. No Brasil, é
considerada ainda um grave problema de saúde pública, pois
acomete milhões de pessoas, provocando anualmente um
número expressivo de formas graves e até mesmo óbitos [6].

O ciclo da doença inicia-se quando um homem
contaminado elimina ovos do verme ao excretar em uma região
hídrica favorável ao desenvolvimento do parasita. Destes ovos
eclodem larvas ciliadas – Miracídios, que penetram na
epiderme do caramujo e o contamina. Após um período de
maturação no interior do molusco, estas larvas sofrem
metamorfoses e são liberadas pela pele do caramujo, agora
como larvas com cauda, denominadas Cercárias – a forma
infectante da doença. As Cercárias buscam o hospedeiro
definitivo e penetram na pele do homem. Agora sem a cauda,
são carregados pela corrente sanguínea e, quando adultos, se
alojam nas veias do intestino ou da bexiga do hospedeiro,
causando assim a esquistossomose. Os vermes adultos se
reproduzem, gerando novos ovos que serão expelidos pelo
homem – fechando assim o ciclo da doença [6].

O combate à esquistossomose pode ser feito combinando
estratégias de combate ao molusco Biomphalaria junto a
medidas de melhoria de saneamento, saúde e educação, já que
o ciclo de vida do parasita depende tanto das interações entre
as larvas e os hospedeiros, quanto das condições para o
desenvolvimento das larvas [6].

III. AGENTES BROWNIANOS

A modelagem do problema ocorrerá a partir da técnica de
agentes brownianos. Um Agente Browniano é caracterizado
por um conjunto de variáveis de estado ui

k , onde i=1,...,N se
refere a um agente i individual e k indica suas diferentes
variáveis de estado [4]. Na modelagem dos agentes utilizados
na simulação serão adotadas duas observáveis: espaço (Eq. 1) e
velocidade (Eq. 2), presentes em todos os agentes pois assume-
se que todo agente apresenta mobilidade no espaço, e duas
internas: a informação e energia. A variável de informação
interna (Eq. 3) permite caracterizar a natureza dos agentes
vetores (homem e caramujos), no caso do problema em
questão, caracterizar o fato do agente estar ou não infectado. A

A Brownian Agent approach for modeling and simulating the population dynamics of the schistosomiasis

contagion

177

energia interna do agente (Eq. 4), permite definir quão ativo
um agente estará num dado estágio da simulação. No caso do
problema proposto, isso é o equivalente à reserva metabólica
dos indivíduos das diferentes populações de parasitas. Os
parasitas (Miracídios e Cercárias) sobrevivem temporariamente
consumindo sua reserva de nutrientes.

ui
1
= r⃗ i , (1) ui

2
=d

r⃗ i

d t
=v⃗ i , (2)

ui
3
=θi , (3) ui

4
=ei . (4)

 O comportamento individual de cada agente apresenta um
comportamento determinístico, baseado em fatores que
influenciam o meio sobre o qual está inserido. No caso das
populações biológicas, este se apresenta na forma das
restrições associadas ao recurso hídrico (lagoas, rios e açudes);
já no caso de populações humanas, refere-se às necessidades
biológicas que levam o indivíduo humano à um ambiente de
possível contágio. Nos agentes são especificados uma
componente estocástica para permitir representar a livre busca
pelo ambiente geográfico, ou seja, cada agente poderá se
deslocar aleatoriamente em torno de uma posição média,
simulando o andar errante em busca de recursos, como por
exemplo, alimentos. Dessa forma, a dinâmica das variáveis
poderá ser influenciada por fatores estocásticos e
determinísticos.

O modelo do ambiente para o problema corresponde a um
ambiente geográfico, onde os recursos hídricos, essencial na
dinâmica do contágio, são modelados na forma de potenciais
atrativos determinísticos para os agentes miracídios, cercárias e
caramujos. Dessa forma, o recurso hídrico pode ser modelado a
partir de uma função matemática que descreve uma área de
influência para os agentes citados. Para caracterizar os
ambientes lacustres, esses recursos são representados por
geometria circular ou elíptica.

De acordo com o modelo do agente e do ambiente, é
possível determinar a variação da velocidade individual do
agente (Eq. 5) e também o consumo de energia (Eq. 6) de cada
um dos agentes.

d
ui

k

d t
=f i

k
+Fi

stoch , (5) d
ui

4

d t
=−m i(t) , (6)

onde f i
k , , representam as influências determinísticas

(recursos hídricos e campo de informação, discutido a seguir)
sobre o agente, F i

Stoch , as influências estocásticas e mi , a taxa
metabólica do agente.

O consumo de energia será aplicado somente em agentes da
população de parasitas (Miracídios e Cercárias), pois assume-
se que o tempo de vida dos agentes da população de parasitas é
muito menor que o tempo de vida da população de vetores.
Dessa forma, o número de agentes do tipo vetores permanece
constante ao longo de cada simulação.

A informação interna do agente está presente somente nos
agentes caramujos e humanos, e varia somente de acordo com
as condições propícias ao contágio, esta variável contribui para
a construção de áreas locais de influência em determinadas
regiões do ambiente, denominadas de campo de informação.

No modelo, a interação entre os agentes das diferentes
populações será modelada por um campo de informação. O
campo de informação é construído a partir da contribuição
individual de cada agente segundo o valor de sua informação
interna atual. Dessa forma, quanto maior o número de agentes
concentrados numa dada região do espaço, maior será o efeito
deste campo sobre os demais agentes que compõem o sistema.
Admite-se que somente o vetores não contaminados poderão se
contaminar e produzirão regiões em que terão maiores chances
de contágios para as populações de parasitas. Ou seja, um
agente vetor já contaminado não influencia mais o campo de
informações acessível aos agentes do tipo parasita. Para
simular a necessidade da busca de um hospedeiro, os agentes
parasitas sentem a influência do campo, caracterizada como
uma força determinística que os atrai até o(s) agente(s) vetores.
Por outro lado, os agentes vetores são os geradores do campo
de informações contribuindo com o valor do seu estado num
dado ponto do espaço.

IV. O PROCESSO DE SIMULAÇÃO

Um simulador com uma interface Web foi desenvolvida.
Na interface são informados os parâmetros de entrada
agrupados em três categorias: dados de um cenário geográfico
(dimensões da região geográfica, escala, números e
localizações de recursos hídricos), dados demográficos das
populações (tamanho da população de humanos e de caramujos
e sua distribuição no espaço geográfico), dados sobre o tempo
(duração da simulação).

Durante a simulação uma lista de todos os agentes é
mantida em memória e será modificada segundo os passos a
seguir:

1. Atualização dos campos de informação: a lista de
agentes é percorrida para cada agente da classes de vetores
(Humanos ou caramujos), o campo associado é atualizado, ou
seja, o valor associado à novas posições dos agentes vetores é
alterado de acordo com os eventos que ocorreram;

2. Proliferação e contaminação: a contaminação ocorre da
seguinte forma: se o agente for do tipo miracídio ou cercária, e
houver um humano ou caramujo respectivamente, em um
determinado raio, esses agentes são contaminados. Uma vez
contaminados, tais agentes não são curados. Já a proliferação
se dá a seguir: todo agente do tipo humano, que se encontra
contaminado, gera um novo agente miracídio, que será
adicionado ao final da lista de agentes, o mesmo ocorre com os
agentes caramujos que estão contaminados, contudo o novo
agente criado é um agente cercária.

3. Atualização das posições dos agentes: a posição,
velocidade e energia de todos os agentes no sistema são
atualizados. Caso a energia de um determinado agente se
esgote, o respectivo agente é removido da simulação.

A simulação consiste na execução das fases 1, 2 e 3, nessa
ordem, para um número pré-determinado de passos de
simulação, o algoritmo para o processo de simulação é
apresentado na Figura 1.

Cagnin, Guiherme, Baldassin and Gonçalves

178

Figura 1: Algoritmo para o processo de simulação.

Por serem agentes Brownianos, os agentes do tipo Parasitas
modificam sua dinâmica ao serem influenciados pelo campo de
informações gerado pela população de agentes da classe
Vetores. Se estes agentes conseguirem atingir agentes da classe
Vetores, o contágio ocorrerá, mudando o atributo “estado” do
agente Vetor, o que desencadeará a criação de novos agentes
do tipo Parasitas.

V. RESULTADOS

Uma série de simulações foram executadas tendo como
objetivo verificar a dinâmica do contágio das populações. Para
isso, serão analisadas a influencia das localizações dos recursos
hídricos e a influência da população de humanos e de
caramujos, pois como já discutido, o ciclo de contágio da
doença é complexo e envolve a interação de diferentes
populações.

Dessa forma, um conjunto inicial de simulações apresentará
mudanças na localização e dimensão dos recursos hídricos do
ambiente mantendo inalteradas populações de vetores, que nos
demais conjuntos serão modificadas, mantendo o ambiente
inalterado.

Todas as simulações foram executadas no tempo máximo
de 500 passos. A velocidade médida da propagação do
contágio era calculada ao término de cada simulação. Ao todo,
30 simulações foram realizadas para cada conjunto de
parâmetros testado. As simulações são iniciadas com as
diversas populações de agentes dispostas ao longo do espaço
geográfico. Os agentes do tipo humanos estarão dispostos
aleatoriamente, simulando uma ocupação desordenada,
geralmente característica em regiões de baixo saneamento. As
demais populações que dependem do recurso hídrico, são
alocadas ao longo das dimensões desses recursos.

Os fatores antes citados (distribuição e tamanho de
recursos hídricos e densidade populacional) influenciam
diretamente na propagação dessa informação ao longo do
tempo e do espaço. Na Figura 2, é demonstrado que o tamanho
das populações de vetores influencia na velocidade média de
propagação do contágio. Assim como a distribuição e o
tamanho dos recursos hídricos, influenciam diretamente na
distribuição dos agentes caramujos e alteram o número de
humanos localizados em suas proximidades. Isso significa que
um maior número de humanos se tornam suscetíveis ao
contágio.

Uma elevada ocupação de humanos permite que os
caramujos sejam rapidamente contaminados (Fig. 2). O mesmo
comportamento é observado com o número de caramujos. Em
ambos os casos verifica-se que o aumento significativo de

indivíduos da população de parasitas aumenta a possibilidade
de contágio a partir dos indivíduos vetores. O que aumenta a
propagação da doença ao longo do espaço. Isso se deve pois os
vetores contaminados, criam novos parasitas fechando o ciclo
da doença. Este comportamento era esperado segundo as
características do ciclo da doença como já discutido
anteriormente.

 Figura 2: Influência da população de caramujos e humanos

VI. CONCLUSÕES

Uma abordagem multiagente foi utilizada para a
modelagem e simulação da dinâmica das populações no
contágio da esquistossomose. Em geral, os resultados obtidos
a partir do simulador, demonstraram que o fator localidade é
determinante para o contágio, e este fator é influenciado pela
densidade populacional de vetores encontrados ao longo do
espaço geográfico. O simulador foi submetido a uma série de
testes verificando diversos parâmetros, e de forma geral, o
simulador permitiu representar os aspectos relevantes para o
demostrar a dinâmica das populações no contágio da
esquistossomose.

A validação do modelo com dados reais serão realizados
em trabalhos futuros. Em decorrência da complexidade dos
cenários reais, a simulação vai requerer a conexão com
modelos de dados geográficos reais, e em decorrência do
elevado número de agentes, implementar uma versão do
simulador que utiliza o processamento paralelo.

REFERENCES

[1] F. Bousquet and C. Le Page, Multi-agent simulations and ecosystem
management: a review. Ecol. Model . 176. 2004. pp. 313–332.

[2] V. Furtado, Modelagem e Simulação Multiagente da Criminalidade,
Comp.Scien. 0002. Dec. 7, 2008.

[3] C. Linard, N. Poncon, D. Fontenille and E. F. Lambin. A multi-agent
simulation to assess the risk of malaria re-emergence in southern
France , Ecological Modelling 220 (2009) pp. 160–174.

[4] F. Schweitzer. Brownian Agents and Active Particles : Collective
Dynamics in the Natural and Social Sciences, Ed. Springer-Verlag, 2003
Berlin.

[5] H. Hu, P. Gong, B. Xu. Spatially explicit agent-based modelling for
schistosomiasis transmission: Human–environment interaction
simulation and control strategy assessment. Epidemics 2 (2010) 49–65

[6] V. Schall, C. L. Massara, M. J. Enk, H. S. Barros. Os Caminhos da
Esquistossomose. Parte I Dentro do nosso corpo. Centro de Pesquisas
René Rachou/Fiocruz. 2007. (Série Esquistossomose, 8).

[7] J. Shin, Y. Park. Brownian agent-based technology forecasting.
Technological Forecasting & Social Change 76 (2009) 1078–1091.

Definição do ambiente e das populações (vetores e parasitas)
Enquanto a simulação não terminar
 Remover possíveis agentes mortos
 Atualizar a energia dos agentes
 Modificar a posição dos vetores
 Atualizar o campo de informações
 Modificar a posição dos parasitas
 Verificar possíveis contágios
 Criar novos parasitas
FimEnquanto.

A Brownian Agent approach for modeling and simulating the population dynamics of the schistosomiasis

contagion

179

Self-Regulation of Social Exchange Processes in
MAS: a cultural and evolutionary BDI agent society

model

Andressa von Laer∗, Graçaliz P. Dimuro∗ and Marilton S. Aguiar†
∗ Prog. de Pós-Graduação em Computação

Universidade Federal do Rio Grande
Rio Grande, Brazil

Email: {andressavonlaer, gracaliz}@gmail.com
† Prog. de Pós-Graduação em Computação

Universidade Federal de Pelotas
Pelotas, Brazil

Email: marilton@inf.ufpel.edu.br

Abstract—Agent interactions are often understood as service
exchange processes between pairs of agents, followed by the
evaluation of these services by the agents involved, generating
social exchange values. For the social equilibrium of the agent
society there should be an adequate balance of those values, which
can be obtained by the regulation of the social exchange processes
by the agents themselves. A hybrid evolutionary model of self-
regulation of processes of social exchanges in MAS was proposed
for Netlogo. However, certain characteristics involved in social
exchanges are more appropriately dealt with BDI agents. This
paper proposes to develop a model of agent society composed by
cultural evolutionary BDI-like agents, for the self-regulation of
processes of social exchanges, using the JaCaMo framework.

I. INTRODUÇÃO

Na Teoria das Trocas Sociais de Pia-
get [Piaget e Smith 1995] as interações são entendidas
como processos de trocas de serviços entre pares de agentes,
seguidos da avaliação destes serviços por parte dos agentes
envolvidos, gerando assim valores das trocas sociais. Para que
haja o controle das trocas sociais entre agentes, o balanço
dos valores envolvidos nas trocas deve ser continuamente
mantido, tanto quanto possı́vel, perto do equilı́brio, havendo
assim a regulação de trocas sociais.

Vários trabalhos já foram realizados pelo grupo de pesquisa
no sentido da regulação de trocas sociais em Sistemas Mul-
tiagentes (SMA) [Dimuro et al. 2011], [Pereira et al. 2008a],
[Pereira et al. 2008b], [Macedo et al. 2012]. Em particular,
em [Macedo 2013] foi proposto um modelo hı́brido evolu-
cionário de autorregulação de processos de trocas sociais
entre agentes em um SMA, baseado em Teoria dos Jo-
gos [Fiani 2006] e Algoritmos Genéticos (AG) [Linden 2008],
procurando tornar os agentes independentes e reguladores dos
processos de trocas com seus parceiros. A implementação foi
realizada no NetLogo1.

Entretanto, na literatura observa-se que certas carac-
terı́sticas envolvidas em trocas sociais são mais adequa-
damente tratadas com agentes cognitivos, como Agen-

1Disponı́vel em: http://ccl.northwestern.edu/netlogo/

tes BDI (Belief, Desire, Intention) [Rao e Georgeff 1991],
[Rao e Georgeff 1992].

Os Algoritmos Genéticos (AGs) e Culturais (ACs) situam-
se dentro de um paradigma na Inteligência Artificial (IA) que
acredita na possibilidade de reproduzir caracterı́sticas humanas
em uma máquina para que esta possa resolver problemas.
Os AGs são a base dos ACs, porém estes dispõem de um
componente chamado Espaço de Crenças. Os ACs baseiam-se
na ideia de que a cultura também evolui, e sua evolução é mais
rápida que a genética, possibilitando uma melhor adaptação do
agente ao ambiente [Reynolds e Zanoni 1992].

A proposta apresentada neste trabalho é de mapear a
ideia do Jogo de Autorregulação de Processos Trocas Socais
(JAPTS), introduzido no trabalho de [Macedo 2013] para um
sistema de agentes BDI, baseados em algoritmos genéticos e
culturais.

Neste trabalho, adota-se a plataforma JaCaMo2, que é
um framework para programação de sistemas multiagentes
que combina três ferramentas/tecnologias separadas: Jason,
CArtAgo e MOISE+, para modelagem da organização do
sistema multiagente.

Este artigo está organizado da seguinte forma: a Seção II
aborda os conceitos de sistemas multiagentes relacionados ao
modelo de arquitetura BDI e também são descritos os proces-
sos de um agente BDI no ambiente Jason; a Seção III aborda
conceitos, definições e estrutura dos Algoritmos Genéticos e,
também, apresenta conceitos e funcionamento dos Algoritmos
Culturais; a Seção IV apresenta a ideia dos agentes BDI
Evolucionários Culturais através da combinação entre as três
tecnologias abordadas neste artigo; e, por fim, a Seção V
apresenta as considerações finais deste trabalho.

II. AGENTES BDI

Entre as diversas abordagens existentes na área de Inte-
ligência Artificial (IA) em que a arquitetura dos agentes é base-
ada no comportamento humano, a que mais se destaca é o mo-

2Disponı́vel em: http://jacamo.sourceforge.net

Self-Regulation of Social Exchange Processes in MAS: a cultural and evolutionary BDI agent society

model

181

delo BDI, baseado na teoria de raciocı́nio prático humano de-
senvolvido pelo filósofo Michael Bratman em [Bratman 1987].
A estrutura deste modelo é descrita em [Bratman et al. 1988].

O modelo BDI explica o comportamento humano através
das seguintes atitudes: crenças, desejos e intenções, e supõe
que as ações são derivadas a partir do processo chamado
raciocı́nio prático constituı́do de passos. No primeiro passo os
objetivos do agente são determinados através de um conjunto
de desejos que devem ser alcançados. No segundo passo
determina-se quais ações tomar (planos), através do uso dos
meios disponı́veis, para que estes objetivos sejam alcançados.

A arquitetura BDI tem se destacado em sistemas multia-
gentes como um importante método de modelagem e desen-
volvimento de agentes racionais. As três atitudes mentais que
compõem a arquitetura BDI são:

• Crenças (Beliefs): representam a visão que um agente
possui do seu ambiente. Podem ser vistas como o
provável estado do ambiente, isto é, como um com-
ponente informativo do estado do sistema. Um agente
pode ter crenças sobre o mundo, sobre outros agentes,
sobre interações com outros agentes e crenças sobre
suas próprias crenças.

• Desejos (Desires): representam estados desejáveis que
o sistema poderia apresentar e/ou que o agente gostaria
de alcançar. Eles influenciam o agente a agir de forma
a realizar metas, e as ações tomadas são realizadas
através das intenções, causadas pelos desejos.

• Intenções (Intentions): são estados que os agentes
pretendem alcançar, e estão interligadas com os de-
sejos dos agentes da seguinte maneira: se um agente
decide seguir uma meta especı́fica, então esta meta
torna-se uma intenção. Uma intenção quando adotada,
acarretará em um direcionamento no raciocı́nio prático
futuro, ou seja, enquanto se tem uma intenção particu-
lar haverá consideração por ações que são consistentes
para a realização desta intenção.

Um agente BDI permanece comprometido com algum
plano até que ele seja totalmente executado, a intenção (pela
qual o plano foi desenvolvido) seja atingida, seja inatingı́vel,
ou não seja mais útil. Se por algum motivo o agente perceber
que não será capaz de atingir seus objetivos, ele deve rever seus
conceitos afim de fazer novas escolhas de planos e intenções.
Este comprometimento do agente com seus planos e intenções
é um fator importante no modelo computacional de um agente
BDI.

Jason3 [Bordini et al. 2007] é uma plataforma de desen-
volvimento de sistemas multiagentes baseada em um in-
terpretador para uma versão estendida da linguagem de
programação AgentSpeak(L) que oferece uma série de ex-
tensões que são necessárias para o desenvolvimento de
sistemas multiagentes. AgentSpeak é uma linguagem de
programação orientada a agentes e baseia-se em eventos e
ações. É baseada em implementações de sistemas BDI já
existentes na época, tais como Procedural Reasoning System

3Sigla do inglês A Java-based AgentSpeak Interpreter Used with Saci for
Multiagent Distribution Over the Net.

(PRS) [Georgeff e Lansky 1986] e o Distributed MultiAgent
Reasoning System (dMARS) [Luck e Wooldridge 2004].

Em Jason os desejos dos agentes são representados pelos
eventos que ocorrem no interpretador, ativando os planos. O
Jason possui uma estrutura chamada “base de crenças” (belief
base) para armazenar as crenças do agente, esta estrutura
consiste em um conjunto de predicados sobre um estado do
ambiente. As crenças representam o que o agente “acredita”
ser verdade no ambiente, não significa que seja mesmo uma
verdade. Os objetivos de um agente indica o que ele fará,
ou o estado do ambiente que ele deseja atingir. Por exemplo,
dado um determinado objetivo g, o agente se compromete
em alterar o estado do ambiente até que acredite que o
determinado objetivo é verdadeiro. Os planos de um agente
são armazenados em uma espécie de biblioteca de planos, onde
inicialmente armazenam os planos que o próprio programador
escreveu. Para que um objetivo seja alcançado, a cada ciclo de
raciocı́nio um plano é executado, podendo alterar o ambiente.

III. ALGORITMOS GENÉTICOS E CULTURAIS

Os Algoritmos Genéticos (AGs) foram criados nos anos
60 por John Holland, e desenvolvidos em meados dos anos 70
pelos seus alunos da Universidade de Michigan. Holland tinha
como objetivo estudar o fenômeno “evolução” por reprodução
(Darwinismo) [Darwin 1859] e de alguma maneira trazer isto
para a computação [Goldberg 1989].

A evolução por seleção natural ocorre quando os indivı́duos
mais adaptados ao meio ambiente tem mais chances de sobre-
viver. Neste sistema, explorado pelos Algoritmos Genéticos, os
cromossomos podem ser explorados e combinados, no intuito
de formarem melhores candidatos à solução e, consequen-
temente, encontrar soluções aproximadas para problemas de
grande complexidade computacional [Aguiar e Toscani 1997].

Nos cromossomos dos indivı́duos está codificado o conhe-
cimento que cada um possui. Há mecanismos de reprodução
que modificam esta formação, os mais utilizados são: as
mutações, responsáveis por fazer certas alterações, que oca-
sionalmente são benéficas aos cromossomos; inversões, res-
ponsáveis por uma inversão no código do cromossomo; e o
cruzamento (crossover), que faz uma troca com o material
genético dos cromossomos geradores, e é o mecanismo que
influencia na eficiência dos AGs.

Por ser uma técnica robusta e efetiva em uma grande área
de problemas, os AG’s são utilizados em um grande número
de problemas e modelos cientı́ficos e da engenharia. Eles nem
sempre garantem a solução ótima, mas geralmente encontram
uma solução aceitável e de maneira rápida.

Por outro lado, as interações e o comportamento social
dos humanos também são uma forte influência na otimização
da raça humana, além da genética e da evolução, pois as
interações sociais ajudam em uma melhor adaptação do ser
ao ambiente. Baseado nesta ideia, Robert Reynolds propôs os
Algoritmos Culturais (AC’s) [Reynolds e Zanoni 1992], como
complemento às outras técnicas de computação evolutiva.

Segundo Reynolds, os AC’s modelam a evolução cultural
de um sistema computacional ao longo do tempo e pos-
suem um mecanismo explı́cito de aquisição, armazenamento e

Laer, Dimuro and Aguiar

182

integração da experiência e do comportamento dos indivı́duos
e de grupos.

A utilização dos ACs é indicada para diversos tipos de
problemas, como: a) quando se tem grande espaço de busca
a ser explorado; b) quando se tem problemas de otimização
restrita; c) onde a adaptação pode ocorrer em vários nı́veis e
em várias taxas dentro do espaço populacional e de crença; d)
quando se trabalha com ambientes dinâmicos (i.e. World Wide
Web, etc); entre outros.

IV. AGENTES BDI EVOLUCIONÁRIOS CULTURAIS

A definição de Agentes BDI Evolucionários Culturais surge
através de um mapeamento entre os elementos da arquitetura
BDI e os Algoritmos Genéticos na plataforma Jason. Este
mapeamento consiste em:

• os “cromossomos” dos AGs passam a ser representa-
dos na forma das crenças (beliefs) dos agentes;

• o processo de reprodução (crossover, mutação, etc.)
é guiado através dos objetivos dos agentes BDI, ou
seja, a reprodução se torna um objetivo com o qual
o agente se comprometerá em alcançar executando
uma sequência de planos existentes no Jason (passos
necessários para o alcance do objetivo final);

• no processo de evolução de suas crenças, os agentes
podem se valer da “cultura do SMA”, que é alimen-
tada pelos próprios agentes. Esta cultura pode ser
tratada como um artefato do CArtAgO da plataforma
JaCaMo, onde nela estão informações comuns e dis-
ponı́veis a todos os agentes BDI.

V. CONCLUSÃO

Na área de Inteligência Artificial um dos desafios en-
contrados é a representação de conhecimento, por ser uma
propriedade humana difı́cil de ser representada a fim de ser
interpretada por máquinas. Por isso se faz necessário a criação
de ferramentas que facilitem o desenvolvimento de agentes
artificiais autônomos.

O presente trabalho apresentou uma proposta para estender
o trabalho apresentado em [Macedo 2013], interligando os te-
mas ali trabalhados com a arquitetura cognitiva BDI, pois estas
facilitam o tratamento das caracterı́sticas subjetivas envolvidas
no modelo. Até o momento foi feita a implementação de uma
aplicação baseada no problema do Caixeiro Viajante – que
tenta determinar uma menor rota para percorrer uma série de
cidades (visitando cada uma pelo menos uma vez) retornando
a cidade de origem – para demonstrar a possibilidade do mape-
amento das caracterı́sticas de uma arquitetura BDI utilizando
a plataforma Jason.

AGRADECIMENTOS

Este trabalho teve apoio financeiro do CNPq (Proc.
560118/10-4, 305131/2010-9, 476234/2011-5), FAPERGS
(Proc. 11/0872-3) e do Projeto RS-SOC (FAPERGS Proc.
10/0049-7).

REFERÊNCIAS

[Aguiar e Toscani 1997] Aguiar, M. S. e Toscani, L. V. (1997). Algoritmos
genéticos. In I Workshop sobre métodos formais e qualidade de software,
pages 78–87, Porto Alegre/RS.

[Bordini et al. 2007] Bordini, R. H., Hübner, J. F., e Wooldridge, M. (2007).
Programming Multiagent Systems in AgentSpeak using Jason. University
of Liverpoll: Wiley.

[Bratman 1987] Bratman, M. (1987). Intention, plans, and practical reason.
Harvard University Press.

[Bratman et al. 1988] Bratman, M. E., Israel, D. J., e Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning. Technical Report 425,
AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA
94025. Revised version.

[Darwin 1859] Darwin, C. (1859). On the Origin of Species. John Murry,
London.

[Dimuro et al. 2011] Dimuro, G. P., da Rocha Costa, A. C., Gonçalves,
L. V., e Pereira, D. R. (2011). Recognizing and learning models of social
exchange strategies for the regulation of social interactions in open agent
societies. Journal of the Brazilian Computer Society, 17(3):143–161.

[Fiani 2006] Fiani, R. (2006). Teoria Dos Jogos. CAMPUS.
[Georgeff e Lansky 1986] Georgeff, M. P. e Lansky, A. L. (1986). Procedu-

ral knowledge. In Proceedings of the IEEE Special Issue on Knowledge
Representation, volume 74, pages 1383–1398.

[Goldberg 1989] Goldberg, D. (1989). Genetic algorithms in search, opti-
mization, and machine learning. Artificial Intelligence. Addison-Wesley.

[Linden 2008] Linden, R. (2008). Algoritmos Genéticos. Brasport, 2a
edition.

[Luck e Wooldridge 2004] Luck, M. e Wooldridge, M. (2004). The dmars
architecture: A specification of the distributed multiagent reasoning
system. In Autonomous Agents and Multiagent Systems, pages 1–2.

[Macedo 2013] Macedo, L. F. K. (2013). Uma abordagem evolucionária e
espacial para o jogo da autorregulação de processos de trocas sociais em
sistemas multiagentes. Dissertação de mestrado, Universidade Federal
do Rio Grande.

[Macedo et al. 2012] Macedo, L. F. K., Dimuro, G. P., Aguiar, M. S.,
da Rocha Costa, A. C., Mattos, V. L. D., e Coelho, H. (2012). Analyzing
the evolution of social exchange strategies in social preference-based
mas through an evolutionary spatial approach of the ultimatum game.
In Social Simulation (BWSS), 2012 Third Brazilian Workshop on, pages
83–90.

[Pereira et al. 2008a] Pereira, D. R., Gonçalves, L. V., Dimuro, G. P., e
Costa, A. C. (2008a). Constructing bdi plans from optimal pomdp
policies, with an application to agentspeak programming. pages 240–
249, Santa Fe, Argentina.

[Pereira et al. 2008b] Pereira, D. R., Gonçalves, L. V., Dimuro, G. P., e
Costa, A. C. (2008b). Towards the self-regulation of personality-based
social exchange processes in multiagent systems. In Zaverucha, G. e
Costa, A. L., editors, Advances in Artificial Intelligence - SBIA 2008,
volume 5249 of Lecture Notes in Computer Science, pages 113–123.
Springer Berlin Heidelberg.

[Piaget e Smith 1995] Piaget, J. e Smith, L. (1995). Sociological Studies.
Taylor & Francis.

[Rao e Georgeff 1991] Rao, A. S. e Georgeff, M. P. (1991). Modeling
rational agents within a BDI-architecture. In Fikes, R. e Sandewall, E.,
editors, Proc. 2nd Intl. Conf. on Principles of Knowledge Representation
and Reasoning), pages 473–484, San Mateo. Morgan Kaufmann.

[Rao e Georgeff 1992] Rao, A. S. e Georgeff, M. P. (1992). An abstract
architecture for rational agents. In Proc. of the 3rd International
Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 439–449. Morgan Kaufmann.

[Reynolds e Zanoni 1992] Reynolds, R. e Zanoni, E. (1992). Why cultural
evolution can proceed faster than biological evolution. In Proceedings
of International Symposium on Simulating Societies, pages 81–93. sn.

Self-Regulation of Social Exchange Processes in MAS: a cultural and evolutionary BDI agent society

model

183

In-silico Simulation of Indoor Panic Situations using

Reactive Agents

Giorgio P. F. G. Torres, Willian C. Farago, Alcione de Paiva Oliveira

Departamento de Informática

Universidade Federal de Viçosa

Viçosa, Minas Gerais, Brazil

{giorgio.torres; willian.farago}@ufv.br, alcione@dpi.ufv.br

Abstract – Panic situations sadly happens frequently. Even in

cases where there are people trained to deal with emergency

situations, most people panic, resulting in possible tragedies. In

this article, it is investigated how primitive agents, with low

capacity for deliberation and limited perception of the

environment, behave in a panic scene. We conducted a case

study, taking as example the tragedy in Santa Maria, Rio Grande

do Sul - Brazil, where a fire in a nightclub resulted in the deaths

of 241 persons.

Keywords – simulation; simulação; multi-agent systems;

sistemas multiagentes; MAS; SMA; Repast Simphony simulation

I. INTRODUÇÃO

O comportamento de multidões possui muitas variáveis,
algumas previsíveis e outras que surgem aleatoriamente,
dependendo de circunstâncias do momento. Esta complexidade
torna imprevisível o comportamento global. Para evitar
tragédias como a ocorrida na boate Kiss na cidade Santa Maria,
Rio Grande do Sul, Brasil [3] onde um incêndio resultou na
perda de 241 vidas, faz-se necessário a investigação minuciosa
dessas variáveis e de seus impactos em ambientes específicos
como o da boate. Segundo [6], uma linha de investigação com
foco em prevenção muito difundida e abordada atualmente,
para problemas com as características anteriores, é a simulação
baseada em Sistemas Multiagentes. A vantagem de uma
simulação por meio desta técnica é o fato de não ser necessário
modelar o comportamento global, bastando a modelagem do
comportamento de cada agente e, a partir da execução do
sistema e pela interação entre os agentes, observar o
surgimento do comportamento global. Em [4] é apresentado
um SMA reativo para analisar o espalhamento da Influenza por
meio de agentes reativos, mostrando a adequação deste tipo de
modelagem para processos estocásticos. A simulação por meio
de SMA do comportamento de aglomerados de pessoas em
situações de pânico não é inédito. [1] desenvolveram um
modelo SMA com esse objetivo, porém as situações modeladas
eram muito genéricas e não levavam em conta as
peculiaridades de uma casa noturna. As mesmas observações
são aplicáveis aos trabalhos de [6] e de [2]. Este artigo
descreve uma simulação por meio de sistemas multiagentes
para uma situação de pânico para ambientes fechados e com
muitos obstáculos, similar ao ambiente onde ocorreu a tragédia
mencionada. É investigado como agentes primitivos, com

baixa capacidade de deliberação e percepção limitada do
ambiente, se comportam em um cenário de pânico.

A próxima seção aborda a simulação do comportamento de
pessoas por meio de sistemas multiagentes. A seção 3 descreve
como foi realizada a modelagem. Na seção 4 são apresentadas
as simulações e resultados e na seção 5 são apresentadas as
conclusões.

II. SIMULANDO COMPORTAMENTO DE PESSOAS COM

SISTEMAS MULTIAGENTES

Os Sistemas Multiagentes (SMA) são compostos por
unidades computacionais, com diferentes graus de capacidade
de deliberação, dotadas de autonomia (são capazes de decidir
sem intervenção de agentes externos) denominadas agentes,
que podem interagir uns com os outros e executar alguma ação
no estado do ambiente no qual foram inseridos. O uso de SMA
vem crescendo nas ultimas décadas, segundo [5] por dois
motivos principais. Primeiramente, em função da crescente
complexidade da vida moderna, criando uma demanda por
sistemas computacionais cada vez mais complexos, dinâmicos
e com execução distribuída. Em segundo lugar, [5] afirma que
os SMA têm a capacidade de desempenhar um importante
papel no desenvolvimento e análise de modelos e teorias. É
justamente esta segunda característica que torna os SMA
interessantes para os estudos dos problemas do comportamento
de multidão. Os SMA são adequados para modelar sistemas
com muitos elementos autônomos, onde cada elemento executa
ações segundo os estímulos percebidos localmente. Problemas
como esse são modelados segundo uma abordagem bottom-up
onde são definidos os aspectos individuais dos agentes, de
forma a permitir que ocorra a emergência dos aspectos
coletivos pela interação entre os agentes. Sendo assim, é
possível verificar como ocorre o deslocamento, em massa, de
pessoas em uma situação de pânico, como no caso de incêndios
em locais fechados.

Um problema com a modelagem de deslocamento de
multidão baseada em agentes é verificado nos casos onde é
necessário simular uma quantidade elevada de pessoas (na casa
das centenas de milhares). Nestes casos a demanda por poder
computacional extrapola a capacidade das máquinas atuais.
Uma solução é tratar a multidão como um todo, aproximando
seu comportamento ao de um fluxo contínuo de um fluido,
eliminando as características individuais. Desta forma é

Este trabalho conta com o apoio financeiro das instituições de fomento
FAPEMIG, FUNARBE, CNPq e da empresa Gapso.

In-silico Simulation of Indoor Panic Situations using Reactive Agents

185

possível estimar o fluxo de circulação/evacuação para
multidões grandes e densas, mas com alguma perda de
fidelidade [6]. Como o objetivo desta pesquisa é focar em
ambientes menores, com capacidade para alguns milhares de
pessoas, optou-se por utilizar agentes específicos que dessem
uma resposta mais fiel da realidade.

O sistema foi modelado e desenvolvido sobre o framework
Repast Simphony

1
, em sua versão 2.0. O Repast Simphony é

um framework para desenvolvimento de sistemas multiagentes
e é de código aberto. As definições de espaço, tempo,
representação das pessoas e dispersão da fumaça, foram feitas
considerando os recursos e limitações do framework.

III. MODELAGEM DOS AGENTES

Os agentes foram modelados como agentes reativos simples
para testar a hipótese de que a ausência de capacidade
cognitiva pode prejudicar a evacuação em casos de pânico. Foi
feita uma classe chamada Customer para representar uma
pessoa. O Repast utiliza essa classe para instanciar todos os
agentes criados no sistema, totalizando 1000 instâncias dessa
classe para representar o público presente na boate. Cada
Customer contém um atributo energy, que representa a
resistência do agente às toxinas presentes no ambiente. Esse
atributo energy é decrementado a cada rodada do simulador em
função da quantidade de toxina existente no espaço em que o
agente se encontra.

A classe Customer contém os seguintes métodos
executados pelo simulador:

1) public void wander(); este método é o que contém o

algoritmo de fuga da boate. Ele está agendado para começar

no tick 1 (unidade de tempo do Repast) e é chamado a cada 1

tick de simulação. Mais adiante será detalhado o processo

decisório dos agentes, a dinâmica da emissão de fumaça tóxica

e o decrescimento da energia do agente.

2) public void die(); este método diminui a energia do

agente à medida em que este está exposto às toxinas. Quando

a energia zera, o agente para de se movimentar pelo ambiente.

Para representar esse estado foi criada uma classe

DeadCustomer que não possui atributos, nem métodos, e serve

apenas para evitar sobrecarga do simulador.
O princípio básico da simulação é de que o agente tome

decisões bem simples e locais. Logo, um Customer decide
apenas se vai correr contra a fumaça, ou seja, para a célula do
espaço que contém menor concentração de gases, ou se vai
andar aleatoriamente. Essa decisão é tomada de modo aleatório
e o agente tem 50% de chance para cada uma. Após ter
escolhido o modo de andar, o agente vai dar dez passos nesse
modo. Essa decisão de modelagem foi feita para que o agente
pudesse sair de situações de mínimo local, ou seja, para que ele
não ficasse preso a um lugar de baixa concentração de fumaça.
Em cada um dos modos, o agente sabe as células livres para as
quais ele pode efetuar um deslocamento. Não é permitido que
dois agentes ocupem um mesmo espaço no grid. Porém quando
um agente “morre”, outros agentes podem ocupar o espaço, ou
seja, podem passar por cima. No modo de movimento
aleatório, a cada tick o agente escolhe uma outra posição

aleatoriamente para se deslocar dentre as células vazias (que
não contém outro Customer, ou parede ou mobília).

O agente tem 50% de chance para cada um dos modos de
movimento, pois no movimento aleatório ele pode decidir ir
para uma célula de alta concentração de fumaça, para sair de
salas sem saída. Se este modo tivesse maior probabilidade de
acontecer, o agente perderia sua energia mais rápido e poderia
levá-lo de encontro com o foco da fumaça. Já no movimento de
ir contra a concentração de fumaça, o agente é guiado para
lugares com maiores chances de ter saída. No entanto, se este
modo tivesse maior chance, o agente poderia ficar preso em
lugares de mínimos locais, como banheiros e salas fechadas.
Por esses motivos apresentados que o agente tem metade das
chances de escolha para cada um dos modos de movimento.

IV. SIMULAÇÕES E ANÁLISE/DISCUSSÃO DE RESULTADOS

Foram efetuadas ao todo 20 simulações. Em cada
simulação os seguintes parâmetros foram modificados:
quantidade de energia do agente; número máximo de passos
em cada modo de movimento; número de agentes presentes; e a
quantidade de fumaça difundida por tick. Os testes revelaram
que:

1) Os únicos fatores que contribuíam para uma maior taxa

de sobrevivência dos agentes foram a quantidade de energia

inicial que é dada a eles, a quantidade de passos que poderiam

dar em cada modo de movimento, e a quantidade de fumaça

expelida pela fonte;

2) Mesmo com uma quantidade de energia muito grande

e/ou uma quantidade de fumaça pequena difundida a partir do

foco e um grande número na quantidade de passos para sair de

mínimos locais, os agentes não eram capazes de sair do

estabelecimento, ficando em torno de 450 a 500, o número de

agentes cuja energia se tornou zero, como mostrado na Fig. 1,

para cada 1000 agentes simulados.

Figura 1. Evolução das taxas de agentes com energia menor que zero (azul) e

com energia maior que zero (vermelho).

A. Definição de instâncias para simulação

O mapa utilizado para execução das simulações foi criado
baseando-se nos dados da reportagem feita pelo site [3] e está
demonstrado na Fig. 2.

1 http://repast.sourceforge.net/

Torres, Farago and Oliveira

186

 Foi feita uma regra de equivalência entre as
dimensões da boate 23,18 metros de fachada por 26,45 metros
de comprimento. Tomou-se como valor máximo de pessoas por
metro quadrado o valor 6. Cada pessoa ocupa uma posição no
grid. Sendo assim, segundo os cálculos, a área mais fiel seria
de 57 unidades de grid na fachada e 65 de comprimento
totalizando 3705 espaços no grid.

Para definir os espaços livres e ocupados também foi feita

uma relação de equivalência. Segundo os bombeiros

entrevistados pelos meios de comunicação, a capacidade

máxima de pessoas na boate seria de 691. Este número é obtido

a partir da divisão da área ocupável (toda a área da boate

descontando paredes e mobília) por 0,4 metros (espaço mínimo

para uma pessoa de 70 kg). Sendo assim chegou-se a uma área

ocupável de aproximadamente 276,4 metros quadrados.

Fazendo a relação com o espaço em grid chegou-se ao valor de

1670 posições ocupáveis por agentes no grid e 2035 não

ocupáveis (parede e mobília). Depois de definidos os

parâmetros descritos e cientes das restrições do simulador, foi

feita uma pesquisa por várias imagens da boate para tentar

estabelecer, com o máximo de exatidão possível a posição e

espessura das paredes e da mobília, chegando ao resultado

visível na Fig. 2. As paredes são representadas com um tom

mais escuro e a mobília em um tom mais claro.

Figura 2. Marcações feitas no espaço para representar o mapa da boate Kiss.

V. CONCLUSÃO

A partir dos resultados pôde-se perceber que, em casos de
situação de pânico, a capacidade deliberativa de um agente é
um fator que proporciona maiores chances de sobrevivência ao
mesmo. Visto que a quantidade de agentes que tiveram sua
energia zerada foi, em torno de, duas vezes maior que o
observado no caso real da boate Kiss.

Como trabalhos futuros devem ser projetados agentes com
maior capacidade de deliberação e dotados de base de
conhecimento de senso comum, que tenham capacidades de
tomar decisões que uma pessoa comum tomaria em situações
de risco para as quais eles não estão previamente preparados.

Como trabalhos futuros pretende-se utilizar diferentes
mapas de ambiente para podermos analisar diferentes
arquiteturas de ambientes e sua evasabilidade, ou seja, sua
capacidade de evacuação de pessoas, mesmo que estas sejam
restritas em sentidos e inteligência, como foi o foco deste
trabalho.

REFERÊNCIAS

[1] J. E. Almeida, R. Rosseti and A. L. Coelho. “Crowd simulation
modeling applied to emergency and evacuation simulations using multi-
agent systems,” DSIE'11 - 6th Doctoral Symposium on Informatics
Engineering, FEUP - Engineering Faculty of Porto University, Porto.
2013.

[2] V. Bansal, R. Kota, and K. Karlapalem. “System issues in multi-agent
simulation of large crowds,” In, 8th International Workshop on Multi-
Agent-Based Simulation (MABS), Honolulu, USA, Springer Berlin /
Heidelberg, 8-19. 2007.

[3] Globo Comunicação e Participações S.A. Como foi a tragédia em Santa
Maria, http://g1.globo.com/rs/rio-grande-do-sul/tragedia-incendio-boate-
santa-maria-entenda/platb/ ultimo acesso 15 de março de 2012.

[4] M. P. Nicoletti, C. B. Rizzi and R. L. Rizzi. “Simulação do
espalhamento da influenza na cidade de Cascavel-PR utilizando agentes
computacionais,” Workshop-Escola de Sistemas de Agentes, seus
Ambientes e apliCações (WESAAC). Florianópolis, SC. 2012.

[5] G. Weiss, (Ed.). “Multiagent systems: a modern approach to distributed
artificial intelligence,” [S.l.]: The MIT Press, 1999. ISBN 0-262-23203-
0.

[6] S. Zhou, D. Chen, W. Cai, L. Luo, M. Y. H. Low, F. Tian, V. S. H. Tay,
D. W. S. Ong and B. D. Hamilton. 2010. “Crowd modeling and
simulation technologies,” ACM Trans. Model. Comput. Simul. 20, 4,
Article 20 (October 2010), 35 pages. DOI = 10.1145/1842722.1842725
http://doi.acm.org/10.1145/1842722.1842725.

In-silico Simulation of Indoor Panic Situations using Reactive Agents

187

Using Agent Coordination Techniques to Support
Rescue Operations in Urban Disaster Environments

Alan D. Barroso, Felipe de C. Santana, Victor Lassance, Luis G. Nardin, Anarosa A. F. Brandão, Jaime S. Sichman*
Laboratório de Técnicas Inteligentes (LTI) – Escola Politécnica (EP) – Universidade de São Paulo (USP)

Av. Prof. Luciano Gualberto, 158 – trav. 3 – 05508-970 – São Paulo – SP – Brasil
{alan.barroso, fesantana, victor.lassance.silva, luis.nardin}@usp.br, {anarosa.brandao, jaime.sichman}@poli.usp.br

Abstract—This extended abstract describes a task allocation
and coordination policy that aims to maximize the efficiency of
teams when they are rescuing the victims and protecting the city’s
heritage in the case of an urban disaster. Our approach considers
the existence of local and global information that could help
this coordination. Supposing that communication is limited and
unreliable, we also present a comparison of those coordination
techniques, aiming to improve the task allocation process. This
abstract comprises our motivation, the main goal and the key
conceptual aspects of the research, as well as the development
steps and specification of the whole project.

I. INTRODUÇÃO

A expansão urbana observada no Brasil nas últimas décadas
causou o crescimento acelerado e desordenado das cidades, po-
tencializando assim a ocorrência de desastres, principalmente
em áreas mais densamente povoadas. Além disso, o Brasil irá
sediar eventos de dimensão internacional, como a Copa do
Mundo de 2014 e os Jogos Olı́mpicos de 2016, aumentando
as consequências de um possı́vel desastre urbano.

No caso especı́fico de desastres naturais, pesquisas e dados
cientı́ficos recentes indicam que eles vêm se tornando mais
frequentes, intensos, dinâmicos e complexos [1]. No Brasil,
alguns dos desastres que têm ocorrido com maior frequência
e que poderiam ter um trabalho de prevenção esbarram em
custos altos, o que faz com que os responsáveis posterguem a
implementação da solução do problema. Dessa forma, como
ocorre com o caso de enchentes e deslizamento de terras, o
gerenciamento de desastres deve ser efetivo para minimizar os
danos causados, através de ações eficientes de coordenação e
alocação dos reduzidos recursos existentes em um ambiente
parcialmente observável.

Nesse trabalho será proposta uma abordagem de alocação
de tarefas que considera a existência de informações locais
e globais com o objetivo de coordenar as entidades de
salvamento para que maximizem a eficiência no resgate a
vı́timas e na proteção do patrimônio da cidade em caso de
desastre. Supondo uma comunicação limitada e incerta, esse
trabalho também apresentará uma comparação de técnicas de
coordenação de forma a melhorar a alocação de tarefas.

Na seção II são apresentados os principais tópicos conceitu-
ais utilizados nesse trabalho, que são Sistemas Multiagentes e
Técnicas de Coordenação como o Partial Global Planning. Já
a seção III descreve a estrutura de fases de implementação des-

(*) Jaime S. Sichman is partially supported by CNPq and FAPESP, Brazil.

te trabalho, enquanto na seção IV detalha-se sua especificação
por meio da descrição dos quatro algoritmos de coordenação
que serão implementados. A seção V traz uma breve conclusão,
descrevendo nossos próximos passos.

II. ASPECTOS CONCEITUAIS

Para melhor entendimento da abordagem proposta nesse
trabalho, nesta seção são apresentados os aspectos conceituais
relacionados às escolhas quanto às estratégias de coordenação
de tarefas. O primeiro aspecto é referente ao modo como o pro-
jeto pode ser visto como um sistema multiagente. O segundo
é referente ao tipo de técnica de coordenação escolhida.

A. A competição Robocup Rescue e seu simulador

A adoção do paradigma multiagente na abordagem apre-
sentada para alocação de tarefas é fortemente dependente
do domı́nio do problema em que estamos trabalhando, em
particular do simulador da competição Robocup Rescue1. O
simulador possui três blocos principais: kernel, simuladores
e agentes. O kernel serve como bloco central e junta todas
as informações pertinentes aos problema. Os simuladores
têm como função principal simular os diversos fatores que
influenciam o andamento de uma rodada da competição. O
terceiro bloco é composto por agentes programáveis, que são
responsáveis por reduzir as perdas dentro do ambiente de
desastre.

Os agentes programáveis possuem um certo grau de au-
tonomia: a decisão de realizar ou não uma ação depende so-
mente da vontade do próprio agente. Esses agentes autônomos
devem então se organizar e se coordenar para poder resolver
o problema proposto na competição. De acordo com [2],
a descrição do problema acima se aproxima bastante à um
sistema multiagente. Esse fator possibilita ao projeto o uso
de técnicas de coordenação e comunicação já estudadas em
sistemas desse tipo, como as descritas a seguir.

B. Técnicas de Coordenação

De acordo com [2], existem três abordagens principais em
técnicas de coordenação para sistemas multiagentes: plane-
jamento centralizado para planos distribuı́dos, planejamento
distribuı́do para plano centralizado e planejamento distribuı́do
para planos distribuı́dos. A primeira abordagem diz respeito
a uma figura central que faz todo planejamento das tarefas e

1http://www.robocup2013.org/?lang=en.

Using Agent Coordination Techniques to Support Rescue Operations in Urban Disaster Environments

189

comunica aos respectivos agentes suas tarefas. A segunda leva
em conta que todos os agentes entram em cooperação para
elaborar um plano comum a todos. Na terceira abordagem, a
mais complexa, cada agente elabora individualmente um plano
próprio, tendo um objetivo comum de cooperar com os outros
agentes.

Escolhemos a terceira abordagem por duas razões princi-
pais, relacionadas ao modo como a comunicação entre agentes
do simulador é feita. Para um agente se comunicar com os
outros, ele leva um ciclo de simulação e, para receber a
resposta, um segundo ciclo, caso a mensagem chegue correta-
mente ao destinatário. Isso dificulta o uso da primeira técnica
de forma competitiva, pois o tempo envolvido para distribuir
os planos entre os agentes seria muito grande. Al;ém disto, a
comunicação entre agentes chega até mesmo a ser inexistente
em alguns cenários, fazendo com que a segunda abordagem
também não possa ser selecionada.

Por essas razões, foi escolhida a técnica de planejamento
distribuı́do para planos distribuı́dos, mais especificamente
através do uso da técnica denominada Partial Global Planning.
A técnica, descrita em [3], baseia-se na existência de dois
nı́veis de planejamento simultâneos, um local e outro global.
No primeiro, o agente cria o seu próprios plano; já no segundo,
os agentes trocam informações para que os planejamentos
locais levem em conta os conhecimentos dos outros agentes.

III. FASES DO PROJETO

Esse trabalho visa analisar os métodos de coordenação
atualmente utilizados pelas entidades de proteção, para poder
sugerir a integração destas diferentes entidades, através de um
mecanismo de comunicação criado com forte embasamento
teórico e prático. Para atingir esse objetivo, o trabalho deve
ser dividido em três fases, cada uma essencial para o resultado
final.

A. Fase 1 - Competição Robocup Rescue

Essa fase do projeto está voltada para a participação
do grupo na competição Robocup Rescue, que ocorrerá em
Eindhoven, Holanda, em junho de 2013. A Robocup Rescue é
uma competição internacional que tem como objetivo colocar
em prática técnicas de coordenação de agentes para diminuir
os danos e as perdas humanas causadas em um ambiente de
desastre. No ambiente de simulação, são utilizados agentes
com diferentes papéis, como do Corpo de Bombeiros, Agentes
de Polı́cia e Ambulâncias, cada um deles com funcionalidades
especı́ficas. Um dos membros do grupo, Luis Gustavo Nardin,
participou desta competição nos anos 2011 e 2012, como
detalhado em LTI Agent Rescue Team Description [4] [5].

O desenvolvimento das técnicas de coordenação envolve
o estudo dos aspectos teóricos e práticos que envolvem a
competição como um todo, desde a teoria sobre sistemas
multiagentes até as regras da competição e o funcionamento
do simulador. Portanto, a participação na competição será
essencial para o andamento do nosso trabalho, pois com ela
poderemos adquirir os conhecimentos teóricos sobre sistemas
multiagentes e técnicas de coordenação, bem como conhecer
o funcionamento do simulador da Robocup Rescue, que uti-
lizaremos em fases posteriores do projeto.

B. Fase 2 - Modelagem e análise de estratégias atuais de
coordenação

Está será uma das fases essenciais do projeto, pois a
partir dela o trabalho tomará um viés mais prático. Tentare-
mos aplicar os conhecimentos adquiridos anteriormente para
poder modelar e analisar quantitativamente os métodos de
coordenação atualmente utilizados pelas entidades de proteção
em cenários de desastre.

Para analisar os métodos de salvamento atuais, serão
pesquisadas as técnicas de coordenação das equipes de resgate
(Bombeiros, SAMU e Defesa Civil) da cidade de São Paulo,
através de visitas aos seus centros de operações e contatos
com seus responsáveis. Quando essas informações tiverem sido
coletadas, as entidades de resgate serão modelados no ambiente
do simulador e, posteriormente simuladas. A partir destes
resultados, uma análise do funcionamento desses agentes será
feita para determinar a melhor forma de integrá-los.

C. Fase 3 - Aplicação das técnicas de coordenação na
integração das entidades de salvamento modeladas e análise
dos resultados

Essa será a última e conclusiva fase do projeto, na qual
serão integradas as estratégias de coordenação e comunicação
criadas na fase 1 com o comportamento modelado na fase 2.
Após realizada a junção das estratégias criadas e dos métodos
de coordenação aplicados, o desempenho da solução final será
avaliado quantitativamente através do simulador, analisando
então quais foram os ganhos trazidos pela integração entre
as diferentes equipes, e pelo uso de algumas técnicas adi-
cionais de coordenação. Para realizar essa análise de desem-
penho, serão definidos parâmetros quantitativos referentes à
simulação, como por exemplo o número de civis resgatados e
o número de prédios que foram destruı́dos pelo fogo. Dessa
forma, o resultado poderá ser expresso em porcentagem de
melhora ou piora de cada um dos parâmetros selecionados.

Esta terceira fase é fundamental para o projeto, demons-
trando seus resultados conclusivos: mostrar como o uso de
algumas técnicas especı́ficas de coordenação e a integração
entre as diferentes entidades pode maximizar a eficiência no
resgate a vı́timas e na proteção do patrimônio da cidade em
caso de desastre.

IV. ESPECIFICAÇÃO

Esse trabalho utiliza como base o código do time imple-
mentado pela equipe do LTI, participante da competição de
2012. Adicionalmente, apresentamos quatro principais algorit-
mos de coordenação para melhorar o projeto existente: (i) o
particionamento baseado em refúgios para os policiais, (ii) o
desbloqueio preventivo, (iii) a inclusão de ações nos agentes de
resgate ao escutar, na simulação, o pedido de ajuda dos civis, e
(iv) a determinação da eficiência de um resgate de acordo com
parâmetros pré-definidos. Outras técnicas serão estudadas para
uma implementação futura; no entanto, devido ao curto tempo
restante até a competição, estas não serão implementadas por
completo para a competição desse ano.

É interessante ressaltar que como esses algoritmos são
voltados para a competição Robocup Rescue 2013, estes nem
sempre irão refletir de maneira idêntica a forma como os

Barroso, Santana, Lassance, Nardin, Brandão and Sichman

190

agentes de resgate se comportariam em um ambiente real. Os
algoritmos descritos abaixo visam exclusivamente aumentar o
score final do time na competição.

A. Particionamento do mapa baseado em refúgios

Uma das tarefas mais difı́ceis na competição é bem dis-
tribuir os agentes de cada equipe, para que estes estejam
sempre próximos aos focos de incêndio e às vı́timas de soter-
ramento, podendo chegar assim rapidamente a esses locais.
Uma das técnicas utilizadas para a distribuição dos agentes
pelo mapa é o particionamento do mapa, de modo que cada
agente ou grupo de agentes fique restrito a um setor designado
no mapa.

A ideia dessa técnica consiste em reservar áreas próximas
aos refúgios para que um policial fique em constante ronda em
torno de um refúgio. Os policiais alocados nessa tarefa terão
como objetivo retirar os bloqueios encontrados nessa região, na
tentativa de limpar a entrada e os principais caminhos próximos
ao refúgio. Essa técnica será utilizada somente em mapas que
contém mais do que um número mı́nimo definido de policiais
disponı́veis, pois deverá haver um número mı́nimo de policiais
para efetuar um desbloqueio preventivo.

B. Desbloqueio preventivo

Dentro do ambiente do simulador, quando uma ambulância
decide salvar um civil preso nos escombros, ela deve se
locomover até o local e tirá-lo dos destroços. Para finalizar o
processo de salvamento, a ambulância deve ainda transportar
o civil machucado do local do acidente até um refugio para
que ele possa ser atendido pelos médicos. Um dos grandes
problemas encontrados durante esse processo é a presença de
bloqueios entre a ambulância e o civil, e entre o civil e o
refúgio. A presença desses bloqueios impede temporariamente
a ambulância de alcançar o civil e/ou levá-lo até um refúgio,
causando a morte do mesmo e consequentemente a diminuição
do score.

Uma solução para o problema, utilizada atualmente, é
chamar um agente de polı́cia no momento em que a ambulância
encontra um bloqueio. No entanto, o tempo levado para o
agente de polı́cia atingir o bloqueio e retirá-lo pode aumentar
o tempo de chegada no local do acidente.

Dessa forma, é proposta a utilização de uma técnica de
desbloqueio preventivo: uma ambulância, ao determinar que
irá salvar um civil, envia uma mensagem de broadcast para
todos os agentes de polı́cia. O agente de polı́cia mais próximo
do civil começa então um processo de busca e remoção de
bloqueios entre o civil e a ambulânci,a e entre o civil e o
refúgio. Esse processo tem por objetivo principal aumentar
as chances de sobrevivência do civil e, consequentemente, do
nosso score.

C. Inclusão de ações ao escutar pedido de ajuda dos civis

No simulador, os agentes civis, quando soterrados, podem
enviar uma mensagem pedindo ajuda para serem socorridos.
Os agentes de salvamento próximos ao civil podem escutar
essa mensagem e descobrir que existe uma pessoa em perigo
naquele local. Essa informação pode então ser repassada aos

outros agentes para que alguém vá em direção ao civil para res-
gatá-lo. Na solução implementada atualmente, os agentes não
estão tomando ações baseados nessa mensagem, e precisam
entrar nas casas para encontrar as vı́timas, o que aumenta
o tempo de salvamento. A implementação desse mecanismo
pode ajudar a aumentar as chances de resgate e, consequente-
mente, melhorar o score do nosso time.

D. Determinação da eficiência de um resgate

Nem sempre é possı́vel chegar no local do acidente a tempo
de salvar um civil. Em certas situações, devido à presença de
um incêndio, por exemplo, os civis morrem antes mesmo que
a ambulância chegue ao local. Para diminuirmos o desperdı́cio
de recursos ao deslocar uma ambulância até o local do incêndio
e não ser capaz de salvar o civil, uma solução é de ponderar
a ida de uma ambulância a um local ao invés de outro pela
eficiência calculada do resgate. Essa eficiência pode levar em
conta, por exemplo, o tempo de deslocamento até o local da
vı́tima, a presença de bloqueios conhecidos no caminho e a
presença de incêndios nas proximidades do local onde o civil
se encontra.

Como dito anteriormente, essa técnica visa somente au-
mentar o score da competição e não reflete necessariamente
o comportamento real de uma ambulância. Em uma situação
real, esse cálculo poderia levar em conta outros fatores que
não estão presentes no simulador e, portanto, não podem ser
incluı́dos na competição.

V. CONCLUSÕES

Neste trabalho, foi brevemente apresentado nosso projeto
de um time de agentes para resgate de civis em situações
de desastre. Descrevemos as suas etapas e as técnicas que
ainda serão implementadas. Atualmente, o projeto encontra-
se na primeira fase, onde foram realizados os estudos teóricos
necessários e as principais estratégias a serem implementadas
para a competição já foram definidas. Os próximos passos
incluem a implementação e testes das estratégias acima citadas
no simulador da competição, além da participação efetiva na
competição em junho de 2013. Posteriormente, ao iniciar a
segunda fase do projeto, serão realizadas visitas aos centros
de coordenação e estudos sobre os protocolos de atuação das
entidades de salvamento do municı́pio de São Paulo, com o
intuito de modelar e analisar esses protocolos no simulador.

REFERENCES

[1] D. Guha-Sapir, F. Vos, R. Below, and S. Ponserre, “Annual disaster
statistical review 2010: The numbers and trends,” Centre for Research
on Epidemiology of Disasters, Tech. Rep., 2011. [Online]. Available:
http://www.cred.be/sites/default/files/ADSR 2010.pdf

[2] M. Wooldridge, An Introduction to Multiagent Systems, 2nd ed. Chich-
ester, UK: John Wiley & Sons Ltd., 2009.

[3] E. Durfee and V. Lesser, “Partial global planning: a coordination
framework for distributed hypothesis formation,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 21, no. 5, pp. 1167–1183, 1991.

[4] A. H. Pereira, L. G. Nardin, and J. S. Sichman, “LTI agent rescue: A
partial global approach for task allocation in the robocup rescue,” Revista
de Informática Teórica e Aplicada, vol. 19, no. 1, pp. 71–92, 2012.

[5] A. B. M. da Silva, L. G. Nardin, and J. S. Sichman, “Um método
baseado em particionamento para exploração de ambientes de desastre,”
in Anais do 9o. Encontro Nacional de Inteligência Artificial. Curitiba,
BR: Sociedade Brasileira de Computação, 2012.

Using Agent Coordination Techniques to Support Rescue Operations in Urban Disaster Environments

191

Using DCOP to Model Resource Allocation: A
Review of Algorithms

Alexander R. Gularte, Diana Francisca Adamatti
Programa de Pós Graduação em Computação

Centro de Ciências Computacionais
Universidade Federal do Rio Grande (FURG)

Rio Grande – RS – Brasil

Abstract—Distributed Constraint Optimization Problem
(DCOP) is a formalism that is widely used for coordination in
multiagent systems. The advantage of applying these algorithms
for multiagent coordination is due to the fact that them are
distributed, robust and scalable. The aim of this work is to present
a revision of the complete and incomplete algorithms, generally
found in the literature and how these approaches can benefit the
resource allocation in Multiagent Systems.

I. INTRODUÇÃO

Diversos formalismos podem ser utilizados para
coordenação de Sistemas Multiagente (SMA), contudo
os Problemas de Otimização de Restrição Distribuı́da
(DCOP - Distributed Constraint Optimization Problems)
vêm ganhando destaque na literatura por ser uma abordagem
robusta e escalável. Os DCOPs estão associados a outros três
formalismos: Problemas de Satisfação de Restrição (CSP -
Constraint Satisfaction Problem)[Apt 2003], Problemas de
Otimização de Restrição (COP - Constraint Optimization
Problems)[Schiex et al. 1995] e Problemas de Satisfação
de Restrição Distribuı́da (DCSP - Distributed Constraint
Satisfaction Problems)[Yokoo et al. 1992].

Um CSP consiste em associar valores a variáveis, de tal
forma que um conjunto de restrições é satisfeito. Cada uma
das n variáveis do problema (X1,X2,...,Xn) assume um valor
que pertence a um determinado domı́nio discreto. Um conjunto
de domı́nios (D1,D2,...,Dn) especifica o domı́nio de cada uma
das variáveis. Uma restrição é definida por um predicado. Uma
restrição Pk = (xk1,...xkj) é um predicado definido sobre o pro-
duto cartesiano Dk1 × . . .× Dkj . O predicado será verdadeiro
se os valores associados às variáveis satisfazem a restrição. A
solução para um CSP é equivalente a encontrar uma associação
de valores para cada uma das variáveis envolvidas no problema
de tal forma que todas as restrições sejam satisfeitas.

A extensão dos CSPs para coordenar a resolução coop-
erativa de problemas distribuı́dos em SMA foi proposta por
[Yokoo et al. 1992]. Para tornar isso possı́vel, as variáveis do
CSP foram distribuı́das entre os agentes. Essa abordagem pôde
ser aplicada, por exemplo, na alocação de tarefas em SMA,
considerando cada tarefa como uma variável e os domı́nios
das variáveis como o conjunto de agentes capazes realizá-las.

O trabalho de [Schiex et al. 1995] propôs generalizar as
funções booleanas dos CSPs em funções valoradas. Esses
valores denotam o impacto causado pela violação da restrição.
Além disso, permitem representar nı́veis de preferência em
relação às possı́veis associações de valores. O processo de

resolução de um COP tende a ser mais complexo que um
CSP, pois, não basta encontrar uma associação que satisfaz
todas as restrições, é necessário encontrar a associação que
otimiza o valor das funções de custo. Isso implica em uma
maior exploração do espaço de estados.

Baseando-se nos formalismos mostrados anteriormente,
diversos pesquisadores propuseram os DCOPs, que podem
ser vistos tanto como uma distribuição dos COPs, como uma
generalização dos DCSPs. Um DCOP é formalmente definido
como a tupla (X , D , C , A, α), onde X = {x1,x2,. . . ,xn}
é um conjunto de n variáveis, D = {D(x1),D(x2),...,D(xn)}
um conjunto de domı́nios discretos no qual cada elemento
corresponde ao domı́nio de uma variável, C um conjunto de
funções de custo, A o conjunto de agentes e α o mapeamento
de agentes e variáveis. Encontrar uma solução de custo mı́nimo
para um DCOP é um problema NP-Hard [Modi et al. 2005].

Em [Yeoh 2010] foi descrita uma possı́vel taxonomia para
abordagens de solução para DCOPs presentes na literatura.
Neste artigo é apresentada uma extensão da taxonomia de
Yeoh onde os algoritmos incompletos são expandidos nos que
tem garantia de qualidade e nos que não tem. A taxonomia
estendida é mostrada na Figura 1.

Fig. 1. Taxonomia dos algoritmos para solucionar DCOPs.

Inicialmente, os algoritmos podem ser divididos em com-
pletos e incompletos. Os completos fornecem soluções ótimas
ao custo de muita computação e trocas de mensagens. Por
outro lado, os incompletos encontram soluções sem garantia
de qualidade mais rapidamente.

Na classe dos algoritmos completos, os parcialmente
centralizados compreendem os algoritmos nos quais alguns
agentes transferem as suas informações de restrição (funções

Using DCOP to Model Resource Allocation: A Review of Algorithms

193

de custo) para que outros agentes centralizadores real-
izem o processamento. O algoritmo mais conhecido dessa
classe é o OptAPO (Optimal Asynchronous Partial Overlay)
[Mailler e Lesser 2004]. O OptAPO apresenta uma abordagem
baseada na cooperação de mediadores, onde alguns agentes at-
uam como mediadores resolvendo centralmente subproblemas
que se sobrepõem.

Diferentemente dos parcialmente centralizados, nos de-
scentralizados cada agente tem acesso apenas as suas
restrições. Essa classe se divide em uma abordagem baseada
em busca e outra em inferência. Os de inferência geralmente
utilizam programação dinâmica para propagar as funções de
custos de um agente para outro. O algoritmo mais referenciado
na literatura que utiliza essa abordagem é o DPOP (Distributed
Pseudo-tree Optimization) [Petcu e Faltings 2005]. Já os al-
goritmos baseados em busca empregam estratégias de busca
distribuı́da para explorar o espaço de soluções até encontrar
aquela que possui o custo mı́nimo.

A classe dos algoritmos incompletos tende a ter maior
aplicação em problemas reais em virtude do reduzido custo
computacional. Apesar de não possuı́rem garantia de encontrar
a solução ótima, alguns fornecem limites de distância máxima
entre a solução ótima e a aquela que pode ser encontrada. Os
algoritmos sem garantia tendem a ser os mais rápidos para
solucionar DCOPs, contudo não apresentam qualquer garantia
em termos de convergência e qualidade da solução.

II. ALGORITMOS COMPLETOS

A. ADOPT - Asynchronous Distributed Constraint Optimiza-
tion

O algoritmo ADOPT (Asynchronous Distributed Optimiza-
tion), proposto por [Modi et al. 2005], se destaca como o
primeiro método completo, distribuı́do, assı́ncrono e com
comunicação local. Essa última caracterı́stica demonstra a
escalabilidade do método, pois um agente se comunica apenas
com seus vizinhos. Dois agentes são considerados vizinhos
sempre que existir ao menos uma função de custo entre eles.
No ADOPT, a assincronia é alcançada à medida que os agentes
podem mudar o valor de suas variáveis sempre que percebam
a existência de uma solução melhor que a atual. Além disso,
essas decisões são realizadas baseando-se em informações
locais. A busca assı́ncrona no ADOPT é uma variante da busca
em profundidade Branch-and-Bound (BB).

B. DPOP - Distributed Pseudo-tree Optimization

Diferentemente do ADOPT, o algoritmo DPOP (Dynamic
Programming Optimization Protocol for DCOP) proposto em
[Petcu e Faltings 2005] utiliza uma estratégia de inferência
baseada em programação dinâmica. A principal vantagem do
DPOP é utilizar um número linear de mensagens, o que reduz o
overhead dos algoritmos de busca distribuı́da. A complexidade
do DPOP depende do tamanho de suas mensagens de utilidade,
que são limitadas exponencialmente.

O algoritmo DPOP é composto por três fases: criação da
árvore DFS (Depth First Search), propagação das mensagens
de utilidade e propagação das mensagens de valor. A primeira
fase consiste em gerar a árvore DFS para o grafo de restrições
do DCOP. Em seguida, ocorre um processo de propagação de

utilidades que começa nas folhas e vai até a raiz. A ideia dessa
fase é ir coletando informações de utilidade a fim de fornecer
subsı́dios para os nós superiores escolherem os valores que
proporcionam maior ganho de utilidade. Terminada essa fase,
inicia-se um processo de propagação de valores, onde, desde
a raiz, os nós começam a associar os valores ótimos a suas
variáveis.

C. OptAPO - Optimal Asynchronous Partial Overlay

A maioria dos algoritmos para solução distribuı́da de
DCOPs mantem uma separação total entre os conhecimen-
tos dos agentes ao longo do processo de resolução. Con-
tudo, em muitos casos, se os agentes pudessem compartilhar
as suas funções de custo, soluções estáveis poderiam ser
encontradas mais rapidamente. Motivado por esse inconve-
niente, [Mailler e Lesser 2004] apresenta um novo algoritmo
baseado em uma técnica parcialmente centralizada denomi-
nada mediação cooperativa. Assim, o OptAPO fornece uma
resolução rápida, distribuı́da e assı́ncrona sem gerar o over-
head decorrente das comunicações excessivas. O OptAPO se
propõe a explorar a velocidade das técnicas centralizadas, ao
mesmo tempo que de forma distribuı́da consegue identificar as
subestruturas do problema.

III. ALGORITMOS INCOMPLETOS

A. Algoritmo Soma-Máxima

Uma das formas de representar um DCOP é através de
grafos bipartidos denominados grafos-fatores. Um grafo bipar-
tido é composto por arestas não direcionais e dois conjuntos
de nós. Nesses grafos, cada aresta conecta nós de conjuntos
diferentes. No caso dos grafos-fatores, um conjunto de nós
representa as variáveis das funções (nós de variável), enquanto
os outros nós representam as funções (nós de funções). As
arestas conectam as variáveis às funções sempre que uma
variável for argumento para uma função.

[Farinelli et al. 2008] propôs representar um DCOP através
de grafos-fatores e então aplicar o algoritmo soma-máxima,
extensão do soma-produto [Kschischang et al. 2001], para en-
contrar soluções aproximadas através de troca de mensagens
locais. Quando aplicado em um grafo-fator acı́clico, o soma-
máxima tem garantia de encontrar a solução ótima, por outro
lado em grafos cı́clicos essa garantia não existe. O soma-
máxima tem a vantagem de apresentar ótima escalabilidade,
uma vez que a complexidade no cálculo das mensagens
depende apenas do número de vizinhos e não do número total
de agentes.

O algoritmo soma-máxima opera através da troca de men-
sagens enviadas de nós de função para nós de variável e de
nós de variável para nós de função. Essas mensagens tratam-se
de funções de custo que ao longo da execução do algoritmo
são somadas e margilizadas. Essas funções resumem todo custo
existente na porção do grafo da qual elas provêm. O algoritmo
termina quando todos os nós de variável tenham recebido todas
as mensagens de seus vizinhos. Nesse momento, cada nó de
variável terá subsidios para decidir qual melhor valor para
assumir, uma vez que irá conhecer o custo existente em todas
as direções ao seu redor.

Gularte and Adamatti

194

B. Algoritmo Soma-Máxima Branch-and-Bound

O trabalho de [Stranders et al. 2009] identificou um gar-
galo em potencial nas mensagens que são enviadas das
funções para as variáveis no soma-máxima. Para gerar es-
sas mensagens é necessário produzir todas as possı́veis
combinações de valores para as variáveis. Contudo, o espaço
de estados em questão cresce exponencialmente em relação
ao número de variáveis e o número de possı́veis val-
ores/estados de cada variável. Com base nesse inconve-
niente, [Stranders et al. 2009] propõe dois algoritmos de
poda. O primeiro deles é executado em uma etapa de pré-
processamento, antes de executar o soma-máxima propria-
mente dito, e baseia-se na poda de estados dominados. Esses
estados consistem em valores atribuı́dos às variáveis que
comprovadamente não levam a uma solução ótima global. O
segundo algoritmo emprega a técnica de busca Branch-and-
Bound para otimizar a exploração de estados necessária ao
gerar as mensagens de funções para variáveis. Estudos poste-
riores referenciam esses dois algoritmos como uma evolução
do soma-máxima, que pode ser chamado de Soma-Máxima
Branch-and-Bound [Macarthur 2011].

C. Algoritmo Soma-Máxima Limitado

O trabalho de [Rogers et al. 2011] propõe uma abordagem
que fornece um limite entre a solução encontrada pelo soma-
máxima e a ótima. Essa evolução foi chamada soma-máxima
limitado (bounded max-sum). A ideia básica do soma-máxima
limitado é remover os ciclos do grafo-fator para obter re-
sultados ótimos com o algoritmo soma-máxima. Entretanto,
para remover ciclos é necessário ignorar algumas dependências
entre funções e variáveis (arestas do grafo-fator), o que acaba
gerando um segundo problema, diferente do inicial represen-
tado pelo grafo cı́clico. Não existe garantia de que a solução
ótima para o grafo livre de ciclos será também uma solução
ótima para o grafo cı́clico. Contudo é possı́vel estabelecer uma
distância limite entre a solução ótima do grafo cı́clico e aquela
encontrada através do grafo acı́clico. Uma etapa chave dessa
abordagem é escolher as dependências que serão removidas,
considerando o impacto que elas terão na qualidade da solução.

IV. MODELAGEM DE ALOCAÇÃO DE TAREFAS COM
DCOP

Alocação de tarefas envolve associar um conjunto de
tarefas a um conjunto de agentes, onde ambos variam com o
tempo, ou seja, o ambiente é dinâmico. Cada agente recebe
uma recompensa baseada em uma função de utilidade que
determina o ganho para cada associação agente-tarefa. Assim,
uma solução ótima será a associação cujo ganho total para
todos os agentes seja maximizado.

Dentre as possı́veis soluções para o problema de
alocação de tarefas, os DCOPs se destacam por serem
uma representação flexı́vel o suficiente para representar as
mudanças rápidas no ambiente sem a necessidade de criar uma
representação completa do mesmo. [Macarthur 2011] utiliza
essa abordagem através de grafos-fatores, onde os agentes são
representados por nós de variável e as tarefas por nós de
função. As principais contribuições do trabalho de Macarthur
são três algoritmos para alocação dinâmica de tarefas: fast-
max-sum, branch-and-bound fast-max-sum e bounded fast-
max-sum, os quais foram desenvolvidos com base no algoritmo

soma-máxima. Além desse trabalho, outros algoritmos para
alocação de tarefas foram desenvolvidos também com base
em DCOPs, por exemplo, o LA-DCOP [Scerri et al. 2005] e
Swarm-GAP [Ferreira Jr et al. 2008].

V. TRABALHOS FUTUROS

Pretende-se investigar domı́nios de problemas reais no qual
a alocação de tarefas/recursos seja carente de abordagens dis-
tribuı́das e eficientes. A partir disso, um determinado domı́nio
será escolhido e modelado sob a perspectiva de sistemas
multiagentes, adotando DCOP para realização da coordenação.
Além disso, diferentes algoritmos serão avaliados a fim de
encontrar o mais adequado para o domı́nio em questão.

REFERENCES

[Apt 2003] Apt, K. (2003). Principles of constraint programming. Cam-
bridge University Press.

[Farinelli et al. 2008] Farinelli, A., Rogers, A., Petcu, A., e Jennings, N. R.
(2008). Decentralised coordination of low-power embedded devices using
the max-sum algorithm. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems - Volume 2,
AAMAS ’08, pages 639–646, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

[Ferreira Jr et al. 2008] Ferreira Jr, P. R., Boffo, F. S., e Bazzan, A. L.
(2008). Using swarm-gap for distributed task allocation in complex
scenarios. In Massively Multi-Agent Technology, pages 107–121. Springer.

[Kschischang et al. 2001] Kschischang, F., Member, S., Frey, B. J., e andrea
Loeliger, H. (2001). Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47:498–519.

[Macarthur 2011] Macarthur, K. S. (2011). Multi-Agent Coordination for
Dynamic Decentralised Task Allocation. PhD thesis, University of
Southampton.

[Mailler e Lesser 2004] Mailler, R. e Lesser, V. (2004). Solving distributed
constraint optimization problems using cooperative mediation. In Inter-
national Conference on Autonomous Agents: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent
Systems-, volume 1, pages 438–445.

[Modi et al. 2005] Modi, P. J., Shen, W.-M., Tambe, M., e Yokoo, M.
(2005). Adopt: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1):149–180.

[Petcu e Faltings 2005] Petcu, A. e Faltings, B. (2005). A scalable method
for multiagent constraint optimization. In International Joint Conference
on Artificial Intelligence, volume 19, page 266. LAWRENCE ERLBAUM
ASSOCIATES LTD.

[Rogers et al. 2011] Rogers, A., Farinelli, A., Stranders, R., e Jennings,
N. R. (2011). Bounded approximate decentralised coordination via the
max-sum algorithm. Artificial Intelligence, 175(2):730–759.

[Scerri et al. 2005] Scerri, P., Farinelli, A., Okamoto, S., e Tambe, M.
(2005). Allocating tasks in extreme teams. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent
systems, pages 727–734. ACM.

[Schiex et al. 1995] Schiex, T., Fargier, H., Verfaillie, G., et al. (1995).
Valued constraint satisfaction problems: Hard and easy problems. In
International Joint Conference on Artificial Intelligence, volume 14, pages
631–639. Citeseer.

[Stranders et al. 2009] Stranders, R., Farinelli, A., Rogers, A., e Jennings,
N. R. (2009). Decentralised coordination of mobile sensors using the max-
sum algorithm. In Proceedings of the 21st international jont conference
on Artifical intelligence, pages 299–304. Morgan Kaufmann Publishers
Inc.

[Yeoh 2010] Yeoh, W. (2010). SPEEDING UP DISTRIBUTED CON-
STRAINT OPTIMIZATION SEARCH ALGORITHMS. PhD thesis, UNI-
VERSITY OF SOUTHERN CALIFORNIA.

[Yokoo et al. 1992] Yokoo, M., Ishida, T., Durfee, E. H., e Kuwabara, K.
(1992). Distributed constraint satisfaction for formalizing distributed
problem solving. In Distributed Computing Systems, 1992., Proceedings
of the 12th International Conference on, pages 614–621. IEEE.

Using DCOP to Model Resource Allocation: A Review of Algorithms

195

Authors Index - Índice de Autores

Adamatti,D.F., 73, 79, 169, 173, 193
Aguiar,M., 181
Alves,G.V., 105
Amaral,H., 145
Amblard,F., 15
Andrade,A.M.S., 97

Báıa,D., 109
Bacelar,F.C., 165
Baldassin,A.J., 177
Barbosa,R., 29
Barboza,F., 97
Barroso,A.D., 189
Barvinki,C.A., 133
Bastos,N., 173
Batista Jr.,A.A., 47
Bazzan,A., 7
Bitencourt,G.K.S., 85
Bommel,P., 165
Borges,K.C.A.D., 157
Botelho,S., 153
Botellho,R.C., 97
Brandão,A.A.F., 61, 189
Brito da Costa,C.P., 53

Cagnin,R.L., 177
Casar,S., 17
Cirilo,E., 109, 149
Cortés,M.I., 121, 137
Costa,A.L., 97
Costa,L.M., 169
Costa,S., 145
Costa,S.N., 53
Coutinho,L.R., 47
Couto,L., 133
Cunha,F., 149

Dessbesell Jr,G., 125
Dimuro,G., 67, 73, 79
Dimuro,G.P., 67, 73, 79, 153, 181
Dobrzanski,T., 105

El Fallah,A., 5, 11

Farago,W., 185
Farias.G., 67
Feijó,A., 137
Fogaça,M., 113
Franco,M.R., 91
Freire,E.S.S., 121, 137
Frozza,R., 125

Gonçalves,E., 137
Gonçalves,E.M., 113
Gonçalves,E.M.N., 141
Gonçalves,F.M.F., 177
Griesang,G., 125
Guilherme,I.R., 177
Gularte,A., 141, 193

Hornburg,J.E., 53
Hubner,J.F., 19, 23, 35

Jerez,E.M., 73, 79
Jung,M., 141

Konzen,A., 129

Laer,A.v., 181
Lassance,V., 189
Lima,F., 137
Lucena,C.J.P., 41, 109, 149, 165

Marchi,J., 85
Molz,R.F., 125
Mota,F., 153

Nardin,L.G., 161, 189
Neri,J., 35
Netto,M., 41
Nogueira,I., 137

Odakura,V.V.A., 133
Oliveira,A.P., 145, 157, 185

Pereira,J., 61
Pieter,R., 125

Rabelo,R.J., 117
Reis,W.M.P., 157
Rocha Costa,A.C., 29, 105
Rocha Jr,R., 121
Rocha,R., 137
Rodrigues,D.F., 145
Rodrigues,H.D., 73, 79
Rodrigues,T.F., 73
Rosa,A.M., 141
Rosa,M., 129
Rosa,V., 153
Rosset,L.M., 161

Santanna Filho,J.F., 53
Santos,C., 35
Santos,F.C.P., 73
Santos,I., 79
Shehory, O., 3
Sichman,J.S., 91, 161, 189
Silva,J.H., 133
Silveira,R.A., 85
Simpĺıcio Jr,M., 61
Szymanski,C., 53

Torres,G., 185

Valadares,C., 41

Winikoff,M., 13

Zambiasi,S., 117
Zatelli,M., 23

	I Invited Speakers - Palestras Convidadas
	On agent collaboration, games and coalitions
	Coordination in multi-agent systems: dimensions and mechanisms
	Agents and Traffic Simulation

	II Short Courses - Oficinas
	Coordination of Complex Systems based on Multi-Agent Planning
	Agent-Oriented Software Engineering: Current State and Future Directions
	Modelling social influence among agents
	Uma introdução a engenharia de métodos situacionais para SMA
	Programação orientada a Multiagentes

	III Full Papers - Artigos Completos
	A Language to Specify the Interaction Considering Agents, Environment, and Organization
	Extending deontic interpreted systems with action logic
	Application of Workflow in Multi-Agent System Organization
	A Normative and Self-Organizing Piloting Model for Virtual Network Management
	A Multiagent System for Urban Traffic Control
	Multiagent systems to search and contracting Tourism services
	A multiagent approach for detecting and mitigating DDoS attacks
	A BDI-Fuzzy Agent Model for exchanges of non-economic services based on the social Exchange theory
	Integrating CartAgO Artifacts for the Simulation of the Social Production and Management of Urban Ecosystems: the case of San Jerónimo Vegetable Garden of Seville, Spain
	A MAS for the Simulation of Normative Policies of the Urban Vegetable Garden of San Jerónimo, Seville, Spain
	TrustE - An Emotional Trust Model for Agents
	Using the JaCaMo framework to develop a SMA for the MAPC 2012 Ägents on Marsscenario
	An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

	IV Short Papers - Resumos estendidos
	Organizational Modelling of a Multiagent System based in a Theater Play
	Modeling Software Project Management with Norms and Reputation
	Integrating the Organizational Model Moise+ to a Cognitive Agent Architecture applied to Robocup Simulator 2D
	Behavior Editor for Agents Based on Service Oriented Architecture
	Model Oriented Approach to Code Generation for Normative Multi-Agent Systems
	Development of a communication mechanism between Pedagogical Agents in a Virtual Learning Environment
	Collection Module Data to Support Pedagogical Agent Affective
	Animated pedagogical agent as learning companion
	Dynamic Modeling of Multi-Agent Systems Using MAS-ML Tool
	Two Different Perspectives about How to Specify and Implement Multiagent Systems
	Multiagent Systems in Travel Planning
	Towards a fault model for BDI agents: an initial study
	Simulating Consumers Energy Profiles through Multiagent Systems
	Multiagent Systems Simulation of Dengue in Minas Gerais (Brazil)
	Use of HPC in Agent-Based Social Simulation: A Case Study on Trust-Based Coalition Formation
	Using Interest Management to Improve Load Balancing in Distributed Simulations
	Simulation and Analysis of Malaria Using Multiagent Systems
	Agent-Based Simulation to a Decision Support System to Pollutant Dispersion
	A Brownian Agent approach for modeling and simulating the population dynamics of the schistosomiasis contagion
	Self-Regulation of Social Exchange Processes in MAS: a cultural and evolutionary BDI agent society model
	In-silico Simulation of Indoor Panic Situations using Reactive Agents
	Using Agent Coordination Techniques to Support Rescue Operations in Urban Disaster Environments
	Using DCOP to Model Resource Allocation: A Review of Algorithms

